Autologous platelets as a source of proteins for healing and tissue regeneration.

Thromb Haemost

Biotechnology Unit, IFR No 4, Hôpital Cardiologique, Avenue Magellan, 33604 Pessac, France.

Published: January 2004

Platelets are known for their role in haemostasis where they help prevent blood loss at sites of vascular injury. To do this, they adhere, aggregate and form a procoagulant surface leading to thrombin generation and fibrin formation. Platelets also release substances that promote tissue repair and influence the reactivity of vascular and other blood cells in angiogenesis and inflammation. They contain storage pools of growth factors including PDGF, TGF-beta?and VEGF as well as cytokines including proteins such as PF4 and CD40L. Chemokines and newly synthesised active metabolites are also released. The fact that platelets secrete growth factors and active metabolites means that their applied use can have a positive influence in clinical situations requiring rapid healing and tissue regeneration. Their administration in fibrin clot or fibrin glue provides an adhesive support that can confine secretion to a chosen site. Additionally,the presentation of growth factors attached to platelets and/or fibrin may result in enhanced activity over recombinant proteins. Dental implant surgery with guided bone regeneration is one situation where an autologous platelet-rich clot clearly accelerates ossification after tooth extraction and/or around titanium implants. The end result is both marked reductions in the time required for implant stabilisation and an improved success rate. Orthopaedic surgery, muscle and/or tendon repair, reversal of skin ulcers, hole repair in eye surgery and cosmetic surgery are other situations where autologous plate-lets accelerate healing. Our aim is to review these advances and discuss the ways in which platelets may provide such unexpected beneficial therapeutic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH03-07-0440DOI Listing

Publication Analysis

Top Keywords

growth factors
12
healing tissue
8
tissue regeneration
8
active metabolites
8
platelets
5
autologous platelets
4
platelets source
4
source proteins
4
proteins healing
4
regeneration platelets
4

Similar Publications

Background: This article is dedicated to David Farrington who was a giant in criminology and, in particular, a pioneer in studying developmental pathways of delinquent and antisocial behaviour. Numerous studies followed his work. Systematic reviews of his and others' research described between two and seven (mainly 3-5) trajectories.

View Article and Find Full Text PDF

Obesity and iron deficiency (ID) are widespread health issues, with subclinical inflammation in obesity potentially contributing to ID through unclear mechanisms. The aim of the present work was to elucidate how obesity-associated inflammation disturb iron metabolism and to investigate the effect of intravenous (IV) iron supplementation on absolute iron deficient pre-obese (BMI 25.0-29.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Background And Aims: Early life factors have been suggested to be associated with later cardiometabolic risk in children, adolescents and adults. Our study aimed to investigate the associations between early life factors and metabolic syndrome (MetS) in children and adolescents.

Methods And Results: Our analysis sample comprised of 8852 children aged 2-9 years at baseline that participated in up to three examination waves of the pan-European IDEFICS/I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!