A Fourier optics approach to the dynamical theory of X-ray diffraction--perfect crystals.

Acta Crystallogr A

CNR-Istituto di Metrologia G. Colonnetti, str. delle Cacce 73, 10135 Turin, Italy.

Published: January 2004

A new formalism is presented concerning the dynamics of X-rays in crystals. It is based on Takagi's equations and Fourier optics; it also offers an alternative to the usual Ewald-von Laue approach. The article does not give new results but shows a new way to formulate the dynamical theory of X-ray diffraction. In addition, it proposes a novel description of X-ray propagation based on the analogy between the dynamics of X-rays in crystals and that of two-level quantum systems.

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0108767303022815DOI Listing

Publication Analysis

Top Keywords

fourier optics
8
dynamical theory
8
theory x-ray
8
dynamics x-rays
8
x-rays crystals
8
optics approach
4
approach dynamical
4
x-ray diffraction--perfect
4
diffraction--perfect crystals
4
crystals formalism
4

Similar Publications

Measuring low light absorption with combined uncertainty <1 per mil (‰) is crucial for many applications. Popular cavity ring-down spectroscopy can provide ultrahigh precision, below 0.01‰, but its accuracy is often worse than 5‰ due to inaccuracies in light intensity measurements.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging.

View Article and Find Full Text PDF

Adaptive mode-selective multiplexers offer the potential to control the modal content within multimode fibers for space division multiplexing (SDM). To such an end, spatial light modulators allow programmable control over the phase, amplitude, and polarization of optical wavefronts. One of the major challenges is to precisely match the manipulated beam to the waveguide modes in the multimode fiber.

View Article and Find Full Text PDF

The digital back-propagation (DBP) is an algorithm that can equalize the chromatic dispersion and nonlinearity in the coherent optical fiber communication system. However, the nonlinear equalization effect of traditional split-step Fourier method (SSFM)-based DBP is limited. This paper replaces the SSFM in DBP algorithm with the fourth-order Runge-Kutta in the interaction picture (RK4IP) method, and employs the Bayesian optimization algorithm (BOA) to optimize the coefficients in RK4IP-based DBP algorithm, then compares it with SSFM-based DBP algorithm, which is also optimized using BOA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!