AI Article Synopsis

  • The study examines three site-specific mutants of recombinant human stefin B (H75W, P36G, P79S), revealing that they maintain similar structural characteristics compared to the original protein.
  • In terms of their molecular behavior, the P36G variant exhibits the highest hydrophobicity and tendency towards amorphous aggregation, while P79S forms dimers and shows a slower rate of amyloid fibril formation.
  • Techniques like circular dichroism, gel-filtration, ANS dye binding, and ThT fluorescence were used to characterize these variants, highlighting differences in structure and aggregation tendencies.

Article Abstract

We describe expression, purification, and characterization of three site-specific mutants of recombinant human stefin B: H75W, P36G, and P79S. The far- and near-UV CD spectra have shown that they have similar secondary and tertiary structures to the parent protein. The elution on gel-filtration suggests that recombinant human stefin B and the P36G variant are predominantly monomers, whereas the P79S variant is a dimer. ANS dye binding, reflecting exposed hydrophobic patches, is highest for the P36G variant, both at pH 5 and 3. ANS dye binding also is increased for stefin B and the other two variants at pH 3. Under the chosen conditions the highest tendency to form amyloid fibrils has been shown for the recombinant human stefin B. The P79S variant demonstrates a longer lag phase and a lower rate of fibril formation, while the P36G variant is most prone to amorphous aggregation. This was demonstrated by ThT fluorescence as a function of time and by transmission electron microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2286520PMC
http://dx.doi.org/10.1110/ps.03270904DOI Listing

Publication Analysis

Top Keywords

recombinant human
16
human stefin
16
p36g variant
12
three site-specific
8
site-specific mutants
8
mutants recombinant
8
p79s variant
8
ans dye
8
dye binding
8
stefin
5

Similar Publications

Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency.

View Article and Find Full Text PDF

Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations.

View Article and Find Full Text PDF

Organelles play essential roles in cellular homeostasis and various cellular functions in eukaryotic cells. The current experimental strategy to modulate organelle functions is limited due to the dynamic nature and subcellular distribution of organelles in live cells. Optogenetics utilizes photoactivatable proteins to enable dynamic control of molecular activities through visible light.

View Article and Find Full Text PDF

Light can be used as a precise and reversible trigger for the activation of optogenetic tools with subcellular resolution. The interaction of the photoreceptor PAL and aptamer 53 was integrated into a CRISPR/dCas9 system, which can be applied for light-controlled activation of gene expression. Here, we describe a protocol for in vitro application of light-dependent overexpression using eBFP as a proof of concept.

View Article and Find Full Text PDF

Wastewater is a reservoir of pathogens and hotspots for disseminating antibiotic resistance genes across species. The metagenomic surveillance of wastewater provides insight into the native microbial community, antibiotic-resistance genes (ARGs) and mobile genetic elements. t.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!