N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2286526 | PMC |
http://dx.doi.org/10.1110/ps.03341804 | DOI Listing |
Front Plant Sci
January 2025
Plant Biochemistry and Physiology, Bielefeld University, Bielefeld, Germany.
The network of antagonistic, neutral, and synergistic interactions between (micro)organisms has moved into the focus of current research, since in agriculture, this knowledge can help to develop efficient biocontrol strategies. Applying the nematophagous fungus as biocontrol agent to manage the root-knot nematode is a highly promising strategy. To gain new insight into the systemic response of plants to a plant-parasitic nematode and a nematophagous fungus, was inoculated with and/or and subjected to transcriptome and metabolome analysis of leaves.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
To overcome the limitations of using large extrinsic chromophores for biological imaging, fluorescent unnatural α-amino acids have been widely adopted as intrinsic peptidic probes. Although various classes have been successfully utilised for imaging applications, novel amino acid probes readily prepared through operationally simple synthetic methodology are still required. Here, we report a new approach for the synthesis of unnatural α-amino acids a one-pot process involving activation and palladium-catalysed arylation of tyrosine.
View Article and Find Full Text PDFCurr Dev Nutr
October 2024
Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
Complementing discourse following a February 2023 event on dietary protein needs in Southeast Asia (SEA), this symposium report summarizes the region's protein intake, while simultaneously examining the impact of dietary shift toward complementary and alternative proteins and their health implications. It highlights the importance of protein quality in dietary evaluations, optimal intake, and sustainability, advocating for environmentally conscious protein production and innovation in future foods. Discussion points, expert opinions, national nutrition data, and relevant literature, addressing protein intake and quality, their impact on human health, and various technologies for future foods production, have been included.
View Article and Find Full Text PDFBioinform Biol Insights
January 2025
Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Aims: Antibiotic resistance is currently a major challenge to scientists. Thus, attempts have been made to develop new compounds with antimicrobial activity. In this research, a new antimicrobial peptide with antibacterial activity was isolated from the plant .
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima, 731-0153, Japan.
Methylmalonic acid (MMA) is a small molecule produced during the metabolism of propionate and branched-chain amino acids. Recently, it has been reported that the blood concentration of MMA increases with age and promotes lung cancer metastasis. However, little is known regarding its effects on cancers other than lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!