Background: Ultrasound (US) and single photon emission computed tomography (SPECT) are the two most commonly prescribed procedures for diagnosing coronary artery disease (CAD). We have demonstrated the feasibility of multimodality registration of two-dimensional (2D) and three-dimensional (3D) cardiac US images with cardiac SPECT images with an aim to simultaneously present the complementary anatomical and perfusion information from the two modalities. We have also tested the clinicians' assessment of the clinical adequacy of the registered images.

Methods And Results: We have demonstrated temporal and spatial registration for nine sets of cardiac US and SPECT cine loops covering the entire cardiac cycle. Temporal alignment was performed by interpolation of existing SPECT images at cardiac phases corresponding to available US images. Spatial registration was performed in 3D image space using a mutual information-based approach. Experts from echocardiography and nuclear medicine determined the clinical utility of the registration by rating each registration on a scale of 1 to 5, a rating of 3 or above indicating clinical utility. 2DUS-SPECT registration (five cases) received an average rating of 4.2, whereas 3DUS-SPECT registration (four cases) received an average rating of 2.85. By one-sample t test, the overall evaluations (mean 3.58) were greater than the pre-specified clinical cut-off of 3 with p < 0.05, indicating likelihood of clinical utility.

Conclusion: Our method demonstrates the feasibility of registering cardiac US and SPECT images in their present as well as possible future forms. Such registration has the potential to provide a more accurate and powerful tool for diagnosing CAD.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:caim.0000004325.48512.5aDOI Listing

Publication Analysis

Top Keywords

spect images
16
cardiac spect
12
registration
9
mutual information-based
8
multimodality registration
8
images cardiac
8
spatial registration
8
clinical utility
8
registration cases
8
cases received
8

Similar Publications

This review assesses the primary neuroimaging techniques used to evaluate Parkinson's disease (PD) - a neurological condition characterized by gradual dopamine-producing nerve cell degeneration. The neuroimaging techniques explored include positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). These modalities offer varying degrees of insights into PD pathophysiology, diagnostic accuracy, specificity by way of exclusion of other Parkinsonian syndromes, and monitoring of disease progression.

View Article and Find Full Text PDF

Introduction: SPLASH (NCT04647526) is a multicenter phase III trial evaluating the efficacy and safety of [Lu]Lu-PNT2002 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). This study leveraged a lead-in phase to assess tissue dosimetry and evaluate preliminary safety and efficacy, prior to expansion into a randomized phase. Here we report those results.

View Article and Find Full Text PDF

Editorial: Nuclear medicine advances through artificial intelligence and intelligent informatics.

Front Nucl Med

January 2025

Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

View Article and Find Full Text PDF

Background: The limitation in spatial resolution of bone scintigraphy, combined with the vast variations in size, location, and intensity of bone metastasis (BM) lesions, poses challenges for accurate diagnosis by human experts. Deep learning-based analysis has emerged as a preferred approach for automating the identification and delineation of BM lesions. This study aims to develop a deep learning-based approach to automatically segment bone scintigrams for improving diagnostic accuracy.

View Article and Find Full Text PDF

Aim: This study intended to compare the radiation dose estimates to target and nontarget liver compartments from 99mTc-MAA SPECT/CT and 90Y-PET/MR scans in liver tumors treated by 90Y-glass microspheres.

Material And Methods: Dose estimation was performed for twenty-three eligible patients (13M, 10F) after 99mTc-MAA simulation using SPECT/CT imaging, and over 90Y-PET/MR images after 90Y-microsphere therapy. Simplicit90Y™ software was used for voxel-based dosimetry over the liver parenchyma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!