Evidence for a major gene underlying bone size variation in the Chinese.

Am J Hum Biol

Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China.

Published: April 2004

Osteoporosis is a major public health problem defined as a loss of bone strength, of which bone size is an important determinant. In the present study, familial correlation and segregation analyses for the spine and hip bone sizes were performed for the first time in a Chinese sample composed of 393 nuclear families with a total of 1,193 individuals. The results indicate a major gene of codominant inheritance for spine bone size; however, there is no evidence of a major gene influencing hip bone size. Significant familial residual effects are found for both traits, suggesting their polygenic inheritance. Heritability estimates (+/-SE) for spine and hip bone size were 0.62 (0.13) and 0.59 (0.12), respectively. Sex and age differences in genotype-specific average bone size were observed. Compared with our previous study on bone mineral density (BMD) in the same population, this study suggests that genetic determination of bone size may be different from that of BMD, and thus studying bone size as one surrogate phenotype for osteoporotic fractures may be necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajhb.10240DOI Listing

Publication Analysis

Top Keywords

bone size
32
major gene
12
hip bone
12
bone
11
evidence major
8
size
8
spine hip
8
gene underlying
4
underlying bone
4
size variation
4

Similar Publications

Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity.

View Article and Find Full Text PDF

-Glucan-modified nanoparticles with different particle sizes exhibit different lymphatic targeting efficiencies and adjuvant effects.

J Pharm Anal

December 2024

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.

Particle size and surface properties are crucial for lymphatic drainage (LN), dendritic cell (DC) uptake, DC maturation, and antigen cross-presentation induced by nanovaccine injection, which lead to an effective cell-mediated immune response. However, the manner in which the particle size and surface properties of vaccine carriers such as mesoporous silica nanoparticles (MSNs) affect this immune response is unknown. We prepared 50, 100, and 200 nm of MSNs that adsorbed ovalbumin antigen (OVA) while modifying -glucan to enhance immunogenicity.

View Article and Find Full Text PDF

Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.

View Article and Find Full Text PDF

Background: This study evaluates the effects of ozone on hard and soft tissue healing when a free tissue flap is used to close wound areas lacking primary closure over autogenous grafted sites.

Methods: In our study, 24 male Wistar rats were divided into four groups: two control groups and two ozone-treated groups. All rats underwent the same surgical procedure.

View Article and Find Full Text PDF

Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!