This study focused on the temporal and spatial pattern of expression of the cell adhesion molecule axonin-1 in amacrine cells and the identification of these cells in the developing chick retina. We analyzed 5-20-day-old chick embryos. The antigen was localized and visualized by the indirect immunogold and the immunofluorescence technique. Colocalization studies with antibodies against tyrosine hydroxylase, acetylcholinesterase, choline acetyltransferase, parvalbumin, calbindin, and calretinin served to characterize these cells further and to explore whether they have other properties in common. Axonin-1 was expressed in amacrine cells from E8 onward in the inner nuclear, in the inner plexiform, and in the ganglion cell layer. Their maturation showed a gradient similar to that found for amacrinogenesis. Expression was closely correlated with the period when the cells develop and shape their processes. The interneurons were classified with reference to Cajal, and most of the morphological types described by him were found. In addition, some cells were considered as axon-bearing amacrine cells. However, the total number of labeled cells was rather small. At least two morphologically different types terminated in each of the inner plexiform sublayers. Narrow- and wide-field arbors indicated the existence of a diversified network. The colocalization studies revealed that the neurotransmitters and neuropeptides overlapped partially with axonin-1 expression. This indicated that axonin-1-immunoreactive amacrine cells were also functionally diverse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10986 | DOI Listing |
Brain Stimul
January 2025
Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia; Tyree Foundation Institute of Health Engineering (IHealthE), UNSW, Sydney, NSW 2052, Australia. Electronic address:
Introduction: Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterized simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway.
During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFThis study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!