Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.

J Comp Neurol

University of South Dakota School of Medicine, Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, Vermillion, South Dakota 57069, USA.

Published: January 2004

The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient of laminar differentiation, there is also a progressive shift in the pattern of corticocortical connections. Cingulate areas have widespread connections with limbic, parietotemporal, and frontal association areas, whereas parietal area 3 has more restricted connections with adjacent somatosensory and motor cortices. TSA is primarily related to the somatosensory-motor areas and has limited connections with the parietotemporal and frontal association cortices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10980DOI Listing

Publication Analysis

Top Keywords

area 23c
24
areas
18
areas ssa
16
cingulate areas
16
parietotemporal frontal
16
area
14
connections
12
areas 23a
12
23c connections
12
connections parietotemporal
12

Similar Publications

First Report of Causing Root Rot of Incense Cedar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.

View Article and Find Full Text PDF

Aim: All commercial chelating gels contain EDTA which reacts chemically with sodium hypochlorite (NaOCl). This research aimed to develop a non-EDTA clodronate gel and to measure physicochemical and functional gel properties of the novel and commercial gels.

Methodology: A 1.

View Article and Find Full Text PDF

Significance: Topical cyclosporine A (CsA) for the treatment of dry eye disease is often associated with instillation discomfort, which may negatively influence patient adherence to therapy. This study found that refrigerating topical CsA reduced instillation discomfort compared with instillation of warm CsA. Thus, refrigerating CsA prior to instillation may improve patient experience when using CsA to manage dry eye disease.

View Article and Find Full Text PDF

Dicationic, -symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)(N∧N)](OTf), bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, ), 4,4'-di--butyl-2,2'-bipyridine (dbbpy, ), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, ), 1,10-phenanthroline (phen, ), 4,7-diphenyl-1,10-phenanthroline (bphen, ), dipyrido[3,2-:2',3'-]phenazine (dppz, ), or 2,3-diphenylpyrazino[2,3-][1,10]phenanthroline (dpprzphen, )] are obtained through chloride abstraction from [PtCl(trz)] () using AgOTf in the presence of the corresponding diimine. Complexes show long-lived phosphorescence from LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.

View Article and Find Full Text PDF

Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!