The postgenomic era, as manifest, inter alia, by proteomics, offers unparalleled opportunities for the efficient discovery of safe, efficacious, and novel subunit vaccines targeting a tranche of modern major diseases. A negative corollary of this opportunity is the risk of becoming overwhelmed by this embarrassment of riches. Informatics techniques, working to address issues of both data management and through prediction to shortcut the experimental process, can be of enormous benefit in leveraging the proteomic revolution. In this disquisition, we evaluate proteomic approaches to the discovery of subunit vaccines, focussing on viral, bacterial, fungal, and parasite systems. We also adumbrate the impact that proteomic analysis of host-pathogen interactions can have. Finally, we review relevant methods to the prediction of immunome, with special emphasis on quantitative methods, and the subcellular localization of proteins within bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC521502PMC
http://dx.doi.org/10.1155/S1110724303209232DOI Listing

Publication Analysis

Top Keywords

subunit vaccines
8
proteomics vaccinology
4
vaccinology immunobiology
4
immunobiology informatics
4
informatics perspective
4
perspective immunone
4
immunone postgenomic
4
postgenomic era
4
era manifest
4
manifest inter
4

Similar Publications

Enhancing cell-mediated immunity through dendritic cell activation: the role of Tri-GalNAc-modified PLGA-PEG nanoparticles encapsulating SR717.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.

Introduction: Vaccines against intracellular pathogens like require the induction of effective cell-mediated immunity. Adjuvants primarily enhance antigen-induced adaptive immunity by promoting the activation of antigen-presenting cells (APCs).This study is to develop an adjuvant targeted to dendritic cells (DCs), one of the main APCs, so as to assist in inducing a long-term cellular immune response to protein antigens.

View Article and Find Full Text PDF

mRNA vaccines in the context of cancer treatment: from concept to application.

J Transl Med

January 2025

Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.

Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route.

View Article and Find Full Text PDF

Maternal vaccination is essential for safeguarding both mother and foetus from infectious diseases. This study investigated the immunogenicity and efficacy of a maternal ORF-B2L genetic vaccine in a pregnant rat model, focusing on maternal-neonatal immune modulation, placental and neonatal spleen transcriptomics and the underlying mechanisms contributing to neonatal immune development. Female rats received intramuscular injections of either a gene vaccine (GV) containing 200 μg of recombinant ORF-B2L DNA and 50 μg of a subunit protein or an empty plasmid as a control.

View Article and Find Full Text PDF

Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins.

View Article and Find Full Text PDF

Backgrounds: Intramuscular mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have a low intensity and latency of antibody response in patients with muscular disorders (MDs). However, the mechanisms involved in this phenomenon remain unknown. This study aimed to clarify the mechanism of the low immunogenicity of intramuscular SARS-CoV-2 mRNA vaccination in patients with MDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!