Dendritic cells from malaria-infected mice are fully functional APC.

J Immunol

Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Published: January 2004

Malaria infection has long been associated with diminished T cell responses in vitro and more recently in experimental studies in vivo. Suppression of T cell-proliferative responses during malaria has been attributed to macrophages in a variety of murine and human systems. More recently, however, attention has been directed at the role of dendritic cells in this phenomenon, with several studies suggesting that maturation of dendritic cells is inhibited in vitro by the presence of malaria-infected E. In the studies reported here, we have examined the function of dendritic cells taken directly from infected mice. We found that they express high levels of costimulatory proteins and class II MHC, can activate naive T cells to produce IL-2 as efficiently as dendritic cells from uninfected mice, and support high levels of IFN-gamma production by naive T cells through an IL-12-dependent mechanism. Dendritic cells from infected mice also support higher levels of TNF-alpha production by naive T cells. These same dendritic cells present parasite Ag to a malaria-specific T cell hybridoma, a finding that demonstrates that dendritic cells participate in the generation of Ag-specific immunity during infection. Our findings challenge the contention that dendritic cell function is inhibited by malaria infection.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.172.1.475DOI Listing

Publication Analysis

Top Keywords

dendritic cells
32
naive cells
12
cells
10
dendritic
9
malaria infection
8
infected mice
8
high levels
8
mice support
8
production naive
8
cells malaria-infected
4

Similar Publications

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

A satisfactory treatment for the dissemination of duodenal cancer has not yet been established. We describe a case of peritoneal dissemination and malignant ascites in duodenal cancer that was successfully treated with adoptive cell therapy with no adverse effects. A 72-year-old Japanese male patient with primary duodenal cancer with distal lymph node metastases received chemotherapy with S-1, an oral pyrimidine fluoridederived agent, and oxaliplatin after gastrojejunal bypass, which resulted in tumor shrinkage; however, peritoneal dissemination developed.

View Article and Find Full Text PDF

Background: Increasing evidence suggests an association between gut microbiota and Autoimmune Liver Diseases (AILDs). However, causal inference remains controversial due to confounding bias in observational studies. Additionally, there is currently no clear evidence indicating that immune cells act as intermediate phenotypes in the pathogenesis of AILDs.

View Article and Find Full Text PDF

The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases.

Biomark Res

December 2024

The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.

The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!