The existence of T cells restricted for the MHC I-like molecule CD1 is well established, but the function of these cells is still obscure; one implication is that CD1-dependent T cells regulate autoimmunity. In this study, we investigate their role in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, using CD1-deficient mice on a C57BL/6 background. We show that CD1-/- mice develop a clinically more severe and chronic EAE compared with CD1+/+ C57BL/6 mice, which was histopathologically confirmed with increased demyelination and CNS infiltration in CD1-/- mice. Autoantigen rechallenge in vitro revealed similar T cell proliferation in CD+/+ and CD1-/- mice but an amplified cytokine response in CD1-/- mice as measured by both the Th1 cytokine IFN-gamma and the Th2 cytokine IL-4. Investigation of cytokine production at the site of inflammation showed a CNS influx of TGF-beta1-producing cells early in the disease in CD1+/+ mice, which was absent in the CD1-/- mice. Passive transfer of EAE using an autoreactive T cell line induced equivalent disease in both groups, which suggested additional requirements for activation of the CD1-dependent regulatory pathway(s). When immunized with CFA before T cell transfer, the CD1-/- mice again developed an augmented EAE compared with CD1+/+ mice. We suggest that CD1 exerts its function during CFA-mediated activation, regulating development of EAE both through enhancing TGF-beta1 production and through limiting autoreactive T cell activation, but not necessarily via effects on the Th1/Th2 balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.172.1.186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!