Regulation of ribosomal RNA gene transcription by RNA polymerase I (Pol I) is fundamental to ribosome biogenesis and therefore protein translation capacity and cell growth, yet little is known of the key signaling cascades involved. We show here that insulin-like growth factor-1 (IGF-1)-induced Pol I transcription in HEK293 cells is entirely dependent on phosphatidylinositol 3-kinase (PI3K) activity and, additionally, is modulated by the mammalian target of rapamycin (mTOR), which coordinates Pol I transcription with the availability of amino acids. The mitogen-activated protein kinase (MAPK) pathway is weakly stimulated by IGF-1 in these cells and partly contributes to Pol I transcription regulation. Activation of Pol I transcription by IGF-1 results from enhancement of the activity of the Pol I transcription machinery and increased occupancy by SL1 of the endogenous tandemly repeated ribosomal promoters in vivo. The inputs from PI3K, mTOR, and MAPK pathways converge to direct appropriate rRNA gene expression by Pol I in the nucleolus of mammalian cells in response to environmental cues, such as growth factors and nutrients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M307735200 | DOI Listing |
Nat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.
View Article and Find Full Text PDFCoordinated expression of replication-dependent (RD) histones genes occurs within the Histone Locus Body (HLB) during S phase, but the molecular steps in transcription that are cell cycle regulated are unknown. We report that RNA Pol II promotes HLB formation and is enriched in the HLB outside of S phase, including G1-arrested cells that do not transcribe RD histone genes. In contrast, the transcription elongation factor Spt6 is enriched in HLBs only during S phase.
View Article and Find Full Text PDFProgesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Transcription by RNA polymerase II (Pol II) can be repressed by noncoding RNA, including the human RNA Alu. However, the mechanism by which endogenous RNAs repress transcription remains unclear. Here we present cryogenic-electron microscopy structures of Pol II bound to Alu RNA, which reveal that Alu RNA mimics how DNA and RNA bind to Pol II during transcription elongation.
View Article and Find Full Text PDFNat Commun
January 2025
Human Technopole, Milan, Italy.
RNA polymerase III (Pol III) transcribes short, essential RNAs, including the U6 small nuclear RNA (snRNA). At U6 snRNA genes, Pol III is recruited by the snRNA Activating Protein Complex (SNAPc) and a Brf2-containing TFIIIB complex, forming a pre-initiation complex (PIC). Uniquely, SNAPc also recruits Pol II at the remaining splicesosomal snRNA genes (U1, 2, 4 and 5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!