A human 8-oxoguanine-DNA glycosylase (hOGG1) is the main enzyme that repairs 8-oxoG, which is a critical mutagenic lesion. There is a great deal of interest in the up- or down-regulation of OGG1 expression after DNA damage. In this study, we investigated the effect of a DNA-alkylating agent, methylmethane sulfonate (MMS), on hOGG1 expression level and found that MMS treatment resulted in an increase in the functional hOGG1 expression in HCT116 cells. A region between -121 and -61 of the hOGG1 promoter was found to be crucial for this induction by MMS. Site-directed mutations of the two inverted CCAAT motifs substantially abrogated the induction of the hOGG1 promoter as a result of MMS treatment. In addition, the NF-YA protein (binding to the inverted CCAAT box) was induced after exposing cells to MMS. Moreover, gel shift and supershift analyses with the nuclear extracts prepared from HCT116 cells identified NF-YA as the transcription factor interacting with the inverted CCAAT box. Mutations of the inverted CCAAT box either prevented the binding of this factor or abolished its activation as a result of MMS treatment. Finally, this study showed that hOGG1-expressing HCT116 cells exhibited increased hOGG1 repair activity and resistance to MMS. Overall, these results demonstrate that MMS can up-regulate hOGG1 expression through the induction of the transcription factor, NF-YA, and increased transcription level of the hOGG1 gene correlates with an increase in enzyme activity providing functional protection from MMS.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M311132200DOI Listing

Publication Analysis

Top Keywords

mms treatment
16
inverted ccaat
16
hogg1 expression
12
hct116 cells
12
ccaat box
12
mms
10
dna-alkylating agent
8
agent methylmethane
8
methylmethane sulfonate
8
sulfonate mms
8

Similar Publications

Clinical characteristics and serological profiles of Lyme disease in children: a 15-year retrospective cohort study in Switzerland.

Lancet Reg Health Eur

January 2025

Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.

Background: Lyme disease (LD) is caused by and is the most common tickborne disease in the northern hemisphere. Although classical characteristics of LD are well-known, the diagnosis and treatment are often delayed. Laboratory diagnosis by serological testing is recommended for most LD manifestations.

View Article and Find Full Text PDF

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

3D printing of continuous cotton thread reinforced poly (lactic acid).

Sci Rep

December 2024

Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Guilin University of Aerospace Technology, Guilin, 541004, China.

This paper purposed to prepare poly (lactic acid)/continuous cotton thread (PLA /CCT) filaments by using prepreg method, and investigated the properties of PLA/CCT filament and their 3D printed composites. Firstly, a prepreg device was home-made to immerse CCT with PLA melts. The effects of the dragging speed and tensioning equipment on the quality of PLA/CCT filament was investigated.

View Article and Find Full Text PDF

Optimizing Catheter Verification: An Understandable AI Model for Efficient Assessment of Central Venous Catheter Placement in Chest Radiography.

Invest Radiol

October 2024

From the Department of Radiology and Nuclear Medicine, UKSH Lübeck, Lübeck, Germany (J.S., M.M., L.B., Y.E., J.B., M.M.S.); Institute of Medical Informatics, University of Lübeck, Lübeck, Germany (L.H., M.P.H.); Philips Research Hamburg, Hamburg, Germany (A.S., H.S.); and Institute of Interventional Radiology, UKSH Lübeck, Lübeck, Germany (M.M.S.).

Purpose: Accurate detection of central venous catheter (CVC) misplacement is crucial for patient safety and effective treatment. Existing artificial intelligence (AI) often grapple with the limitations of label inaccuracies and output interpretations that lack clinician-friendly comprehensibility. This study aims to introduce an approach that employs segmentation of support material and anatomy to enhance the precision and comprehensibility of CVC misplacement detection.

View Article and Find Full Text PDF

Increased Risk of Postoperative Complications in Organ Transplant Recipients Undergoing Mohs Micrographic Surgery.

Dermatol Surg

October 2024

All authors are affiliated with the Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.

Background: Solid organ transplant recipients (SOTRs) are at increased risk of developing nonmelanoma skin cancers (NMSC), which may require treatment by Mohs micrographic surgery (MMS). Previous small-scale studies yielded conflicting findings on post-MMS complications in immunosuppressed individuals, and large-scale population-based analyses for SOTRs undergoing MMS are lacking.

Objective: The authors investigate postoperative complications after MMS in SOTRs using the TriNetX database of over 106 million patients in the US Collaborative Network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!