In an effort to develop a more effective DNA immunization strategy for HIV, we synthesized an HIV-2 env DNA vaccine and delivered it in a novel polycationic adjuvant formulation that forms nanoparticles in solution and enhances protein expression. The polycationic adjuvant contained imidazole moieties to facilitate endosomal escape. Nanoparticles containing the DNA vaccine plasmid were formed by electrostatic condensation with the polycationic adjuvant. We hypothesized that this formulation would improve immune responses to the gp140 env gene from HIV-2(UC2) by increasing the level of expressed antigen. We found that the nanoparticles were superior at inducing high levels of systemic antibody responses compared to naked DNA when delivered by the intradermal route in BALB/c mice. In addition, the nanoparticles induced higher levels of IgM, IgG, and IgA antibodies. These results suggest that nanoparticles may be an important adjuvant formulation to improve the effectiveness of genetic immunization and rationalize its use in the evaluation of vaccine candidates in non-human primate models for AIDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2003.02.001DOI Listing

Publication Analysis

Top Keywords

dna vaccine
12
polycationic adjuvant
12
env dna
8
novel polycationic
8
adjuvant formulation
8
formulation improve
8
dna
5
nanoparticles
5
enhancement human
4
human immunodeficiency
4

Similar Publications

The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).

View Article and Find Full Text PDF

Preventing immune escape of SARS-CoV-2 variants is crucial in vaccine development to ensure broad protection against the virus. Conformational epitopes beyond the RBD region are vital components of the spike protein but have received limited attention in the development of broadly protective SARS-CoV-2 vaccines. In this study, we used a DNA prime-protein boost regimen to evaluate the broad cross-neutralization potential of immune response targeting conformational non-RBD region against SARS-CoV-2 viruses in mice.

View Article and Find Full Text PDF

Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.

View Article and Find Full Text PDF

Despite first-void urine (FVU) being increasingly recognized as a credible specimen for human papillomavirus (HPV) detection, there is a lack of well-validated testing methods providing full quantitative genotyping required for vaccine impact monitoring from FVU samples. The Allplex HPV28 assay, capable of individually detecting 28 HPV genotypes, presents a promising method. We aimed to evaluate its genotype-specific performance on FVU samples, following optimization of FVU preanalytics.

View Article and Find Full Text PDF

[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Porcine deltacoronavirus (PDCoV) is a major pathogen causing fatal diarrhea in suckling piglets, and there is currently a lack of effective vaccines and drugs to prevent and control the virus. The nonstructural protein 13 (NSP13) serves as a virus-coded helicase and is considered to be a crucial target for antiviral drugs, making it imperative to investigate the helicase activity of NSP13. In this study, the gene of PDCoV was synthesized and integrated into the prokaryotic expression vector pET-28a to construct the recombinant plasmid pET-28a-NSP13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!