Serum paraoxonase (PON1) is a high-density lipoprotein (HDL) associated protein, which plays a critical role in the pathogenesis of atherosclerosis, although it was primarily associated with the hydrolysis of organophosphorus compounds. PON1 was initially thought to be independent from physiological or pathological states, although recently some environmental factors have been reported to modulate its activity. In this study, we have investigated the promoter (PON1 -108C/T and -909 C/G) and coding region (PON1 192Q/R and 55L/M) polymorphisms, as well as PON1 activity towards different substrates (paraoxon, phenylacetate and diazoxon) in 102 individuals with long term low dose exposure to pesticides in a plastic greenhouse setting (sprayers), who are probably the group of agricultural workers with the highest exposure to pesticides. PON1 activity towards paraoxon was nonsignificantly decreased (up to 53.5%) in the sprayers subgroup exposed to organophosphates (n = 41) compared with nonsprayers acting as controls (n = 39). None of the genotypes studied was associated significantly with the subgroup of individuals exposed to organophosphates, although differences between sprayers and nonsprayers were observed in the PON1 -909 G/C polymorphism. Among the environmental factors that significantly predicted lower rates of PON1 activity towards paraoxon are, interestingly, the exposure to organophosphates and current smoking. By contrast, the utilization of protective clothing while spraying pesticides inside the greenhouses was positively associated with PON1 activity, very likely by preventing the pesticides from being absorbed. This study suggests that chronic exposure to pesticides might decrease PON1 activity and pinpoints the potential usefulness of monitoring PON1 activity in occupational settings where exposure to organophosphates occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1191/0960327103ht400oa | DOI Listing |
Cir Cir
January 2025
Department of General Surgery, Antalya Training and Research Hospital, Antalya, Turkey.
Objective: Dysregulation of lipid metabolism can be one of the pathophysiological mechanisms linking high-density lipoprotein cholesterol (HDL-C) dysfunction to obesity. The aim of the study is to show possible changes in lipid metabolism with atherogenic indices in obese patients after sleeve gastrectomy (SG) surgery.
Method: Thirty patients who had SG surgery for obesity were included in the prospective study.
J Psychopharmacol
January 2025
Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
Objective: Therapeutic drug monitoring (TDM) indicators have been suggested to predict overall outcome responses to olanzapine (OLZ) treatments in terms of efficacy and metabolic syndrome. This study aimed to investigate whether paraoxonase-1 (PON-1) activity can be used to predict schizophrenia patient outcomes.
Methods: Schizophrenic patients ( = 50) aged between 20 and 65 years who received OLZ treatment were recruited, and their Positive and Negative Syndrome Scale scores, PON-1 activity, and olanzapine drug levels normalized by dose (OLZ/D) and its metabolite N-desmethyl-olanzapine (DMO), together with biochemical parameters, were determined.
Background: Alopecia areata (AA) is a T-cell-mediated autoimmune disease that significantly impacts patient quality of life. The breakdown of hair follicle immune privilege underlies AA pathogenesis. However, the precise mechanism of this breakdown remains unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:
Introduction: Paraoxonase-1 (PON1) is a crucial esterase in cardiovascular health, closely associated with HDL and known for its antioxidant and anti-inflammatory properties. Reduced PON1 activity has been linked to cardiovascular diseases. Lysophospholipids (LysoPLs), essential for cellular processes and immune responses, are implicated in the pathogenesis of cardiovascular diseases and are bound to lipoproteins, contributing to their diverse effects.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-0033, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!