Selective remodeling of rabbit frontal cortex: relationship between 5-HT2A receptor density and associative learning.

Psychopharmacology (Berl)

Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102-1192, USA.

Published: April 2004

Rationale: Associative learning during classical trace eyeblink conditioning has been shown to be regulated by serotonin 5-HT(2A )receptors and to be critically dependent on the integrity of frontal cortex. Chronic administration of 5-HT(2A) ligands has been shown to produce a selective up- or down-regulation of 5-HT(2A) receptors in frontal cortex.

Objectives: We examined whether alterations in 5-HT(2A) receptor density had a functional significance with respect to associative learning.

Methods: Animals received chronic injections of LSD, BOL or MDL11,939 and 1 day later began classical trace conditioning of the eyeblink response.

Results: The density of 5-HT(2A) receptors in frontal cortex was significantly increased at 1-4 days after the cessation of chronic injections of the selective 5-HT(2A) receptor ligand MDL11,939. Rabbits demonstrated an enhancement of associative learning when training began at 1 day after cessation of chronic MDL11,939 injections, but acquired at the same rate as controls when training began at 8 days after cessation of injections, a time when receptor density had returned to control levels. Animals that began training 1 day after chronic injections of BOL or LSD, drugs that produce decreases in 5-HT(2A) receptor density, demonstrated normal rates of acquisition.

Conclusions: These results indicate that increases in the density of 5-HT(2A) receptors in frontal cortex are associated with increases in the rate of associative learning, and further support an important role for this receptor in cortical circuitry that mediates learning. More generally, these results suggest an approach for functional remodeling of brain regions in the adult animal.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-003-1687-4DOI Listing

Publication Analysis

Top Keywords

frontal cortex
16
5-ht2a receptor
16
receptor density
16
associative learning
16
5-ht2a receptors
16
receptors frontal
12
chronic injections
12
5-ht2a
9
classical trace
8
density 5-ht2a
8

Similar Publications

The applause sign (AS) is a recognized phenomenon observed in progressive supranuclear palsy (PSP) and other neurological conditions where individuals produce over three claps following a request to clap only thrice after a demonstration. In this study, we introduced a novel linguistic phenomenon termed the oral applause sign (OAS) associated with the AS. The OAS is characterized by increased repetition counts of Japanese repetitive onomatopoeic words, such as uttering "pata-pata-pata" instead of the expected "pata-pata.

View Article and Find Full Text PDF

This case report presents a complex medical scenario involving early 60s female patient with a history of chronic lymphocytic leukaemia (CLL) complicated by Evans syndrome, characterised by autoimmune haemolytic anaemia and immune thrombocytopenia. The patient had received various treatments, including steroids, rituximab, cyclosporine and acalabrutinib. The patient's neurological symptoms began around 3 years prior to presentation, with shaking of her right leg, followed by shaking of both hands, particularly the left hand.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!