Unlabelled: The development of resistance to any of the currently licensed non-nucleoside reverse transcriptase inhibitors (NNRTI) invariably leads to cross-resistance to the drugs in that class. New NNRTI, that have the promise of being active even when such 'signature' mutations are present, are in development. Such novel therapies could be effective after current NNRTI failure as there would probably be no cross-resistance. We assessed the short-term efficacy and safety of a next generation NNRTI, TMC 125, a diarylpyrimidine derivative that has in vitro activity against NNRTI resistant HIV-1. TMC 125 was studied in HIV-1 infected patients with high-level phenotypic NNRTI resistance in an open-label phase IIa trial.

Methods: Sixteen individuals receiving an NNRTI-containing antiretroviral regimen (efavirenz or nevirapine) with an HIV-1 RNA viral load of > 2000 copies/ml and phenotypic resistance to NNRTI, received TMC 125 for 7 days, as a substitute for their current NNRTI in their failing therapy. Full pharmacokinetic profiles were investigated.

Findings: The primary end point--viral load decay rate per day--was 0.13 log10 RNA copies/ml per day. Over 7 days, we observed a median 0.89 log10 decrease in HIV-1 viral load; seven individuals (44%) had a decrease of > 1 log10. The most significant adverse effects were grade I diarrhoea (31%) and a mild headache (25%). Steady-state drug levels were achieved by day 6.

Interpretation: TMC 125, a next generation NNRTI, is well tolerated and demonstrates significant and rapid antiviral activity in patients with high levels of phenotypic NNRTI resistance to current NNRTI.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002030-200312050-00001DOI Listing

Publication Analysis

Top Keywords

tmc 125
16
nnrti
13
nnrti resistance
12
current nnrti
12
hiv-1 infected
8
generation nnrti
8
phenotypic nnrti
8
viral load
8
tmc
5
hiv-1
5

Similar Publications

Structure-based discovery of novel diarylpyrimidines as potent and selective Non-Nucleoside reverse transcriptase inhibitors: From CH(CN)-Biphenyl-Diarylpyrimidines to CNNH-Biphenyl-Diarylpyrimidines.

Eur J Med Chem

January 2025

Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China; Institute of Flow Chemistry and Engineering, School of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

In order to enhance the anti-HIV-1 potency and selectivity of the previously reported compound 3 (EC = 27 nM, SI = 1361), a series of novel biphenyl-diarylpyrimidine derivatives were developed by employing structure-based drug design strategy. Among these derivatives, compound M44 demonstrated the most potent inhibitory activity against wild-type (WT) HIV-1 as well as five drug-resistant mutants (EC = 5-148 nM), which were 5-173 times more potent than that of 3 (EC = 27-9810 nM). Furthermore, this analogue exhibited approximately 11-fold lower cytotoxicity (CC = 54 μM) than that of etravirine and rilpivirine.

View Article and Find Full Text PDF

Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.

View Article and Find Full Text PDF

Background: Human genetic variants can affect TB and HIV drug metabolism, which may lead to toxicity or treatment failure. We evaluated associations between genetic variants of antiretroviral therapy (ART) and HIV-1 outcomes among TB/HIV patients.

Methods: We included RePORT-Brazil participants with TB/HIV who initiated standard TB treatment [2 months of isoniazid/rifampicin (or rifabutin)/pyrazinamide/ethambutol, then 4 months or more of isoniazid/rifampicin (or rifabutin)], and ART.

View Article and Find Full Text PDF

This report explores the potential of novel 6-aryloxy-2-aminopyrimidine-benzonitrile scaffolds as promising anti-infective agents in the face of the increasing threat of infectious diseases. Starting from 2-amino-4,6-dichloropyrimidine, a series of 24 compounds inspired from the antiviral drugs dapivirine, etravirine, and rilpivirine were designed and synthesized via a two-step reaction sequence in good yields. Biological testing of synthetic analogs revealed potent inhibition against both viral and tuberculosis targets.

View Article and Find Full Text PDF

Changes in NNRTI use have not altered the ecology of NNRTI resistance over the last 10 years in people with HIV experiencing virological failure on antiretroviral drugs.

J Antimicrob Chemother

December 2024

INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, laboratoire de virologie, Sorbonne Université, Paris, France.

Background: We aimed to determine how non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance profiles have changed over the last decade in people living with HIV (PLWHIV) experiencing virological failure on all antiretroviral treatments, including different NNRTIs.

Materials And Methods: We analysed the use of the different NNRTIs in PLWHIV treated with antiretroviral drugs at an academic centre and the HIV NNRTI resistance profiles observed in cases of virological failure over the last 10 years (2014-23). We used the latest ANRS-MIE algorithm (v33; https://hivfrenchresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!