Considerable controversy exists in determining the role of peroxisome proliferator-activated receptor-alpha PPARalpha) on obesity. Previous reports demonstrated that PPARalpha is a critical modulator of lipid homeostasis, but the overt, obese phenotypic characterization in the strain of PPAR deficient (PPARalpha-/-) mice is influenced by other factors, including diet and genetics. Therefore, it is necessary to establish the phenotypic characterization of PPARalpha-/- mice prior to the obesity-related study. In this study, we observed phenotype of PPARalpha-/- mice on mixed genetic background (C57BL/6Nx129/Sv) fed a high fat diet for 16 weeks. PPARalpha-/- mice, regardless of sex, raised body growth rate significantly comparing with wild type and showed male-specific fatty change in the liver. They were shown to lack hepatic induction of PPARalpha target genes encoding enzymes for fatty acid beta-oxidation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pparalpha-/- mice
16
peroxisome proliferator-activated
8
mice mixed
8
fed high
8
high fat
8
fat diet
8
phenotypic characterization
8
mice
5
phenotype peroxisome
4
proliferator-activated receptor-alphapparalphadeficient
4

Similar Publications

MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway.

Eur J Med Res

December 2024

Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.

Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.

Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.

View Article and Find Full Text PDF

Background: NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown.

Methods: Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation.

View Article and Find Full Text PDF

The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE).

View Article and Find Full Text PDF

Deletion of lymphotoxin-β receptor (LTβR) protects against acute kidney injury by PPARα pathway.

Mol Med

December 2024

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.

Background: Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown.

Methods: AKI was induced in mice by renal ischemia-reperfusion (I/R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!