Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, originally implicated in the regulation of lipid and glucose homeostasis. In addition, natural and synthetic PPAR activators may control inflammatory processes by inhibition of distinct proinflammatory genes. As signaling via the vascular endothelial growth factor receptor-2 (VEGFR2) pathway is critical for angiogenic responses during chronic inflammation, we explored whether known antiinflammatory effects of PPAR ligands are mediated in part through diminished VEGFR2 expression. In this study, PPARalpha agonists are found to inhibit endothelial VEGFR2 expression, whereas predominant PPARgamma ligands remained without discernible effects. Time- and concentration-dependent inhibition is demonstrated both at the level of protein and mRNA VEGFR2 expression. Inhibitory effects of PPARalpha agonists on transcriptional activity of the VEGFR2 promoter are conveyed by an element located between base pairs -60 and -37 that contains two adjacent consensus Sp1 transcription factor binding sites. Constitutive Sp1-containing complex formation to this sequence is decreased by PPARalpha treatment, indicating that VEGFR2 gene expression is inhibited by repressing Sp1 site-dependent DNA binding and transactivation. Our coimmunoprecipitation experiments revealed enhanced protein interactions between PPARalpha and Sp1 on PPARalpha activation, thus constituting a probable mechanism by which PPARalpha activators decrease Sp-dependent binding activity to the VEGFR2 promoter. Hence, molecular mechanisms by which PPARs modulate the rate of gene transcription may include direct interactions between specific transcription factors and PPARs that ultimately result in reduced DNA binding to their respective response elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.RES.0000113781.08139.81 | DOI Listing |
EMBO Rep
January 2025
Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.
View Article and Find Full Text PDFNat Metab
January 2025
Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.
To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Virus Research Laboratory, ICMR-National Institute of Cholera and Enteric Disease, Kolkata 700010, India. Electronic address:
Human cytomegalovirus (HCMV) is a common herpesvirus that can severely affect transplant recipients, those with AIDS, and newborns. Existing synthetic medications face limitations, including toxicity, processing issues, and viral resistance. As part of this study, the efficacy of the extracellular enzyme laccase isolated from a widely available mushroom (Pleurotus pulmonarius) was compared to that of ganciclovir, a common antiviral, used against HCMV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!