AI Article Synopsis

Article Abstract

Objective: Monocyte chemoattractant protein 1 (MCP-1) could contribute to enhanced leukocyte recruitment and activation resulting in chronic tissue damage. However, little is known about the molecular mechanisms of cardiac MCP-1 expression. To elucidate these molecular mechanisms, angiotensin II-induced expression of MCP-1 was examined in cultured rat neonatal ventricular cardiomyocytes and fibroblasts by adenovirus gene transfer.

Methods And Results: MCP-1 mRNA increased 3.6-fold in cardiac fibroblasts at 3 hours after 100 nmol/L angiotensin-II stimulation (P<0.01), whereas MCP-1 mRNA in cardiomyocytes was unchanged. Angiotensin II significantly enhanced JNK, p38MAPK, and nuclear factor-kappaB (NF-kappaB) activities of cardiac fibroblasts. Wild-type ASK-1 increased MCP-1 expression of cardiac fibroblasts, whereas dominant negative mutant of ASK-1 (DN-ASK), dominant negative mutant of p38MAPK (DN-p38MAPK), and pyrrolidine dithiocarbamate significantly inhibited such expression. The increased MCP-1 mRNA expression in wild-type ASK-1 transfected fibroblasts was inhibited by cotransfection with adenovirus expressing DN-p38MAPK. On the contrary, the decreased MCP-1 mRNA expression in DN-ASK transfected cells was increased by cotransfection with adenovirus expressing constitutively active MKK6.

Conclusions: Angiotensin II induced MCP-1 gene expression in cardiac fibroblasts. The angiotensin II-induced activation of ASK-1 followed by p38MAPK and NF-kappaB signaling in cardiac fibroblasts is partially involved in myocardial MCP-1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.ATV.0000112930.40564.89DOI Listing

Publication Analysis

Top Keywords

angiotensin ii-induced
8
monocyte chemoattractant
8
molecular mechanisms
8
involvement apoptosis
4
apoptosis signal-regulating
4
signal-regulating kinase-1
4
kinase-1 angiotensin
4
ii-induced monocyte
4
chemoattractant protein-1
4
protein-1 expression
4

Similar Publications

Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.

View Article and Find Full Text PDF

Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues.

View Article and Find Full Text PDF

NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data.

View Article and Find Full Text PDF

Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!