The discrimination of tumor boundaries from normal tissue, as well as the evaluation of tissue heterogeneity and tumor grading often continue to pose a challenge in MRI. Although yielding promising results in various fields of medical imaging, two- dimensional (2D) texture analysis in MRI has, until now, demonstrated a lack of specificity in brain tumor classification. A new three-dimensional (3D) approach using Cooccurrence Matrix analysis is proposed to increase the sensitivity and specificity of brain tumor characterization. A preliminary comparative evaluation of 2D and 3D texture analysis was performed on T(1)-weighted MRI of seven gliomas for characterization of solid tumor, necrosis, edema and surrounding white matter. With 3D compared to 2D method, a better discrimination is obtained between necrosis and solid tumor as well as between edema and solid tumor. Using both methods, peritumoral white matter overlaps with edema, but is completely separated from far homo-lateral matter. This latter shows a complete overlapping with contra-lateral matter. The 3D texture analysis approach could provide a new tool for tumor grading and treatment follow-up, as well as for surgery or radiation therapy planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0730-725x(03)00201-7 | DOI Listing |
PLoS Comput Biol
January 2025
European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.
Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Food Science, STELA Dairy Science and Technology Research Center, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec City, QC, Canada G1V 0A6.
This work aims to evaluate the potential and limits of adhesiveness measurement using a texturometer to assess the ropiness of acid dairy gels for starter selection. Commercial yogurts of various formulations and textures were used to assess the ability of adhesiveness to detect ropiness and to compare performance of different probes. Chemically acidified gels using different concentrations of glucono-delta-lactone (GDL) were tested to determine the effect of pH on adhesiveness.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Traditionally fermented sufu is popular because of its flavor, abundance of nutrients, and long shelf life. However, traditional sufu is difficult to produce via industrial processes because of dominant microorganism attenuation during fermentation. Herein, specific protease-producing strains were isolated from traditional sufu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!