Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors.

Biosens Bioelectron

Dipartimento di Chimica, Universita' degli Studi di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Published: January 2004

Genosensor technology relying on the use of carbon and gold electrodes is reviewed. The key steps of each analytical procedure, namely DNA-probe immobilisation, hybridisation, labelling and electrochemical investigation of the surface, are discussed in detail with separate sections devoted to label-free and newly emerging magnetic assays. Special emphasis has been given to protocols that have been used with real DNA samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0956-5663(03)00256-2DOI Listing

Publication Analysis

Top Keywords

carbon gold
8
gold electrodes
8
electrodes electrochemical
4
electrochemical transducers
4
transducers dna
4
dna hybridisation
4
hybridisation sensors
4
sensors genosensor
4
genosensor technology
4
technology relying
4

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!