Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In two-dimensional turbulence, irreversible forward transfer of enstrophy requires anticorrelation of the turbulent vorticity transport vector and the inertial-range vorticity gradient. We investigate the basic mechanism by numerical simulation of the forced Navier-Stokes equation. In particular, we obtain the probability distributions of the local enstrophy flux and of the alignment angle between vorticity gradient and transport vector. These are surprisingly symmetric and cannot be explained by a local eddy-viscosity approximation. The vorticity transport tends to be directed along streamlines of the flow and only weakly aligned down the fluctuating vorticity gradient. All these features are well explained by a local nonlinear model. The physical origin of the cascade lies in steepening of inertial-range vorticity gradients due to compression of vorticity level sets by the large-scale strain field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.91.214501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!