Tunnel ionizing neutral gas with the self-field of a charged particle beam is explored as a possible way of creating plasma sources for a plasma wakefield accelerator [Bruhwiler et al., Phys. Plasmas (to be published)]. The optimal gas density for maximizing the plasma wakefield without preionized plasma is studied using the PIC simulation code OSIRIS [R. Hemker et al., in Proceeding of the Fifth IEEE Particle Accelerator Conference (IEEE, 1999), pp. 3672-3674]. To obtain wakefields comparable to the optimal preionized case, the gas density needs to be seven times higher than the plasma density in a typical preionized case. A physical explanation is given.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.68.047401DOI Listing

Publication Analysis

Top Keywords

plasma wakefield
12
gas density
8
preionized case
8
plasma
6
wakefield acceleration
4
acceleration self-ionized
4
gas
4
self-ionized gas
4
gas plasmas
4
plasmas tunnel
4

Similar Publications

Generation of highly stable electron beam via the control of hydrodynamic instability.

Sci Rep

December 2024

SANKEN (Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

By employing the stabilizer in the supersonic gas nozzle to produce the plasma density profile with a sharp downramp, we have experimentally demonstrated highly stable electron beam acceleration based on the shock injection mechanism in laser wakefield acceleration with the use of a compact Ti:sapphire laser. A quasi-monoenergetic electron beam with a peak energy of 315 MeV ± 12.5 MeV per shot is generated.

View Article and Find Full Text PDF

Electrons from a laser wakefield accelerator have a limited energy gain due to dephasing and are prone to emittance growth, causing a large divergence. In this paper, we experimentally show that adjusting the plasma density profile can address both issues. Shock-assisted ionisation injection is used to produce 100 MeV quasi-monoenergetic electron bunches in the primary part of the accelerator.

View Article and Find Full Text PDF

Charged and quasineutral beams propagating through an unmagnetized plasma are subject to numerous collisionless instabilities on the small scale of the plasma skin depth. The electrostatic two-stream instability, driven by longitudinal and transverse wakefields, dominates for dilute beams. This leads to modulation of the beam along the propagation direction and, for wide beams, transverse filamentation.

View Article and Find Full Text PDF

With the usage of the postcompression technique, few-cycle joule-class laser pulses are nowadays available extending the state of the art of 100 TW-class laser working at 10 Hz repetition. In this Letter, we explore the potential of wakefield acceleration when driven with such pulses. The numerical modeling predicts that 50% of the laser pulse energy can be transferred into electrons with energy above 15 MeV, and with charge exceeding several nanocoulombs for the electrons at hundreds of MeV energy.

View Article and Find Full Text PDF

Electron self-injection in laser wakefield accelerators (LWFAs) is an important determinator of electron beam parameters. Controllable and adjustable LWFA beams are essential for applications. Controlled injection by capturing sheath electrons can be achieved using plasma density down-ramps or bumps, which perturb the LWFA bubble phase velocity by varying the plasma frequency and by affecting relativistic self-focussing of the laser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!