We obtain exact analytical results for lattices of maps with couplings that decay with distance as r(-alpha). We analyze the effect of the coupling range on the system dynamics through the Lyapunov spectrum. For lattices whose elements are piecewise linear maps, we get an algebraic expression for the Lyapunov spectrum. When the local dynamics is given by a nonlinear map, the Lyapunov spectrum for a completely synchronized state is analytically obtained. The critical line characterizing the synchronization transition is determined from the expression for the largest transversal Lyapunov exponent. In particular, it is shown that in the thermodynamical limit, such transition is only possible for sufficiently long-range interactions, namely, for alpha
Download full-text PDF
Source
http://dx.doi.org/10.1103/PhysRevE.68.045202 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!