Damped finite-time singularity driven by noise.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.

Published: November 2003

We consider the combined influence of linear damping and noise on a dynamical finite-time singularity model for a single degree of freedom. We find that the noise effectively resolves the finite-time singularity and replaces it by a first-passage-time distribution or absorbing state distribution with a peak at the singularity and a long time tail. The damping introduces a characteristic cross-over time. In the early time regime the probability distribution and first-passage-time distribution show a power law behavior with scaling exponent depending on the ratio of the nonlinear coupling strength to the noise strength. In the late time regime the behavior is controlled by the damping. The study might be of relevance in the context of hydrodynamics on a nanometer scale, in material physics, and in biophysics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.68.051105DOI Listing

Publication Analysis

Top Keywords

finite-time singularity
12
first-passage-time distribution
8
time regime
8
damped finite-time
4
singularity
4
singularity driven
4
noise
4
driven noise
4
noise consider
4
consider combined
4

Similar Publications

Disturbance Robust Attitude Stabilization of Multirotors with Control Moment Gyros.

Sensors (Basel)

December 2024

Department of Aerospace Engineering, Chosun University, Gwangju 61452, Republic of Korea.

This paper presents a novel control framework for enhancing the attitude stabilization of multirotor UAVs using Control Moment Gyros (CMGs) and a Disturbance Robust Drive Law (DRDL). Due to their lightweight and compact structure, multirotor UAVs are highly susceptible to disturbances such as wind, making it challenging to achieve stable attitude control using rotor thrust alone. To address this issue, we employ CMGs to provide robust attitude control and apply Fast Terminal Sliding Mode Control (FTSMC) to ensure fast and accurate convergence within a finite time.

View Article and Find Full Text PDF

Intelligent vehicle trajectory tracking with an adaptive robust nonsingular fast terminal sliding mode control in complex scenarios.

Sci Rep

December 2024

School of Vehicle and Energy, Yanshan University, 438 West Hebei Avenue, Qinhuangdao, 066004, People's Republic of China.

This study presents a strategy for an intelligent vehicle trajectory tracking system that employs an adaptive robust non-singular fast terminal sliding mode control (ARNFTSMC) approach to address the challenges of uncertain nonlinear dynamics. Initially, a path tracking error system based on mapping error is established, along with a speed tracking error system. Subsequently, a novel ARNFTSMC strategy is introduced to tackle the uncertainties and external perturbations encountered during actual vehicle operation.

View Article and Find Full Text PDF

Disturbance rejection-based adaptive non-singular fast terminal sliding mode control for a quadrotor under severe turbulent wind.

ISA Trans

December 2024

Department of Automation, Key Laboratory of System Control and Information Processing of Ministry of Education, Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

This paper presents the design of a disturbance rejection-based control strategy for a quadrotor unmanned aerial vehicle subject to model uncertainties and external disturbances described by turbulent wind gusts of severe intensity. First, an extended state observer is introduced to supply full-state and total disturbance estimations within a fixed time regardless of initial estimation errors. Then, an adaptive non-singular fast terminal sliding mode controller with a single-gain structure is proposed to reduce the tuning complexity and drive the pose of the rotorcraft while providing practical finite-time convergence, robustness to bounded external disturbances, non-overestimation of its control gain, and chattering attenuation.

View Article and Find Full Text PDF

Adaptive discrete-time neural prescribed performance control: A safe control approach.

Neural Netw

December 2024

Air and Missile Defense College, Air Force Engineering University, Xi'an, 710051, Shanxi, China. Electronic address:

Most existing results on prescribed performance control (PPC), subject to input saturation and initial condition limitations, focus on continuous-time nonlinear systems. This article, as regards discrete-time nonlinear systems, is dedicated to constructing a novel adaptive switching control strategy to circumvent the singular problem when the PPC undergoes input saturation, while the initial conditions of the system can be released under the framework of PPC. The main design steps and characteristics include: (1) By devising a new discrete-time global finite-time performance function (DTGFTPF), the constructed performance boundary is shown to survive insensitive to arbitrary initial values, which present in the system; (2) A discrete-time adaptive finite-time prescribed performance controller (DTAFPPC) and a discrete-time adaptive backstepping controller (DTABC) are constructed, simultaneously.

View Article and Find Full Text PDF

Tracking control for two-wheeled mobile robots via event-triggered mechanism.

ISA Trans

November 2024

Research and Innovation Center, Obuda University, Budapest 1034, Hungary. Electronic address:

In this paper, we investigate the event-based tracking control for two-wheeled mobile robots using a sliding mode control strategy. To address the conflict between the singularity problem and finite-time performance, a new nonsingular terminal sliding mode controller enabling mobile robots to achieve the tracking goal through a wireless network is developed. Further, redesign the controller using sampling information, in which an event condition is introduced to determine the sampling sequence, and the event-triggered controller avoids the high gain situation through the proposed sliding variables.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!