Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently it has been shown that binary mixtures of equal-sized fine granular materials exhibit spontaneous separation under vertical vibration in the presence of air [Science 295, 1877 (2002)]. Here we describe a model of this behavior based on soft-sphere molecular dynamics coupled to the motion of the surrounding air. It exhibits many of the features observed experimentally including almost complete separation of the components into well defined regions with extremely sharp boundaries. The basic separation mechanism is robust and insensitive to many of the model parameters. Our results show that the forced flow of air through the bed, induced by vibration of the container, is responsible for this form of separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.68.050301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!