Background: Biofilms are a natural occurrence in aquatic environments, including community drinking water systems. The interior of small-diameter tubings in dental unit waterlines (DUWL) are also sites of biofilm formation. In the lumen of the tubings, the flow is minimal, and the water becomes stagnant when the units are not in use. Molecules precipitate from the water onto the interior wall and promote the adherence of planktonic microorganisms from the water. Once they become sessile, the microorganisms change their phenotype. After adherence, there is a so-called surface-associated lag time, and the organisms then enter a growth phase and produce exopolysaccharides that coat the organisms in a slime layer. Within the biofilm, the microorganisms can signal one another, transfer nutrients, and exchange genetic material. The insoluble exopolysaccharides shield the microorganisms from displacement and from penetration by predator organisms, antibiotics, and disinfectants. The external surface layer of microorganisms is faster growing and may detach as "swarmer" cells. Detachment of microorganisms from dental unit biofilm flushed into the oral cavity could theoretically infect the patient. Splatter and aerosols from dental procedures may possibly infect health care personnel.
Methods: This study compared three DUWL cleaners (an alkaline peroxide product, a freshly mixed chlorine dioxide product, and a buffer-stabilized chlorine dioxide product) in 16 dental units with self-contained water systems, 6 months after installation in a periodontal teaching clinic. One unit treated by flushing and drying served as a control. Units were sampled daily for 10 days with heterotrophic plate count (HPC) sampler plates. The plates were incubated for 7 days at room temperature, and colonies were counted at 10.5x magnification. Samples of internal water tubing before and after the use of waterline cleaners were processed and examined by scanning electron microscopy.
Results: The estimated mean HPC was derived from original and replicate independent counts of two investigators of undiluted and diluted samples, reported as colony forming units (CFU)/ml. Shock treatments with the alkaline peroxide product (n = 5) reduced the HPC from baseline, but in the ratio of daily counts to control, there was a large variance and a trend to return of high counts as days passed. The mean daily HPC was significantly better than the control for only 3 of the 9 days of treatment and exceeded the goal of 200 on 3 days. Freshly mixed chlorine dioxide (n = 4) and the buffer-stabilized chlorine dioxide (n = 5) both reduced HPC to near 0 on all days. Their ratios of daily estimated means to that of the control were significantly (P < 0.001) better at all times. In comparing treatments, the freshly mixed chlorine dioxide was better (P < 0.001) than the alkaline peroxide on 8 of 9 days. The buffered chlorine dioxide treatment was better than the alkaline peroxide at all times. The two chlorine dioxide treatments each had so many HPC counts of 0 that a meaningful statistical difference between them was not calculated. Scanning electron microscopy of plastic waterline tubing samples taken before and after treatments showed reductions in biofilm coverage, but the differences were not statistically significant.
Conclusions: Chlorine dioxide waterline cleaners are effective in decontaminating DUWL biofilm. Chlorine dioxide has advantages over other chlorine products. Controlling DUWL biofilm may have beneficial effects on nosocomial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1902/jop.2003.74.11.1595 | DOI Listing |
Water Res
December 2024
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China. Electronic address:
Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl) are inevitable in aqueous systems, leading to the EOP/Cl system. The oxidation of Cl at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Cl), homogeneous free available chlorine (FAC), chlorine dioxide (ClO), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl using the RuO/IrO-Ti anode.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Packaging Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
An active packaging film was developed by integrating sodium chlorite (SC) and citric acid (CA) into a Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix, enabling the controlled release of chlorine dioxide (ClO) gas. The release of ClO was further regulated by introducing chitosan (CS) into the film, leveraging its hygroscopic properties. The results showed that when the addition amount of CS was 4 wt%, the water vapor transmission rate increased by 41.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
Chlorine dioxide (ClO) is a promising alternative disinfectant/oxidant to free chlorine in drinking water treatment, while it reacts with natural organic matter (NOM) to form free chlorine, chlorite ions (ClO), and chlorate ions (ClO) as byproducts. Predicting the ClO consumption and the formation of these byproducts using a kinetic model helps to balance the trade-off between disinfection/oxidation efficiency and byproduct formation. This study establishes a summative equation to describe the reaction between ClO and ClO-reactive moieties in the NOM (CRNOM).
View Article and Find Full Text PDFACS Org Inorg Au
December 2024
Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold.
View Article and Find Full Text PDFWater Res
December 2024
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China. Electronic address:
Lignin- and tannin-like phenolic compounds are shown to be the major compositions of electron donating moieties (EDM) of aquatic natural organic matter (NOM). However, little is known about the compositions of EDMs within effluent organic matter (EfOM). In the present study, chlorine dioxide (ClO) was used as a selectively oxidative probe to investigate the difference in the molecular composition of EDM between NOM and EfOM due to its high selectivity towards electron-rich compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!