Age and season affect chemical discrimination of Liolaemus bellii own space.

J Chem Ecol

Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.

Published: November 2003

We explored chemical discrimination of own vs. novel space by different age classes (neonates, juveniles, and adults) of the lizard Liolaemus bellii, during pre- and post-hibernation seasons. We recorded the number of tongue flicks (TF) lizards produced during 10 min in their own or a novel enclosure. Age class and season affected chemical discrimination. Only adults and neonates discriminated their own space, albeit using different strategies: while adults made fewer TF in their own enclosure, neonates made more TF in their own enclosure. This difference was interpreted in terms of different requirements for discrimination of individuals during their lives. Increased chemical exploration by juveniles and adults at the onset of the post-hibernation season was associated with food-searching and reproductive behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1026359402656DOI Listing

Publication Analysis

Top Keywords

chemical discrimination
12
liolaemus bellii
8
juveniles adults
8
age season
4
season affect
4
chemical
4
affect chemical
4
discrimination
4
discrimination liolaemus
4
bellii space
4

Similar Publications

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Ultrasensitive point-of-care multiplex diagnosis for influenza virus based robust quantum dot microsphere-lateral flow immunoassay.

Biosens Bioelectron

January 2025

Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:

Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Background: Ips typographus (L.), the eight-toothed spruce bark beetle (Coleoptera: Scolytinae), has devastated European Norway spruce (Picea abies) forests in recent years. For the first time, I.

View Article and Find Full Text PDF

Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!