The SUPERFAMILY database in 2004: additions and improvements.

Nucleic Acids Res

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

Published: January 2004

The SUPERFAMILY database provides structural assignments to protein sequences and a framework for analysis of the results. At the core of the database is a library of profile Hidden Markov Models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent an entire superfamily. We have applied the library to predicted proteins from all completely sequenced genomes (currently 154), the Swiss-Prot and TrEMBL databases and other sequence collections. Close to 60% of all proteins have at least one match, and one half of all residues are covered by assignments. All models and full results are available for download and online browsing at http://supfam.org. Users can study the distribution of their superfamily of interest across all completely sequenced genomes, investigate with which other superfamilies it combines and retrieve proteins in which it occurs. Alternatively, concentrating on a particular genome as a whole, it is possible first, to find out its superfamily composition, and secondly, to compare it with that of other genomes to detect superfamilies that are over- or under-represented. In addition, the webserver provides the following standard services: sequence search; keyword search for genomes, superfamilies and sequence identifiers; and multiple alignment of genomic, PDB and custom sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308851PMC
http://dx.doi.org/10.1093/nar/gkh117DOI Listing

Publication Analysis

Top Keywords

superfamily database
8
completely sequenced
8
sequenced genomes
8
superfamily
5
proteins
5
database 2004
4
2004 additions
4
additions improvements
4
improvements superfamily
4
database structural
4

Similar Publications

Transcriptome-Wide Association Study of Metabolic Dysfunction-Associated Steatotic Liver Disease Identifies Relevant Gene Signatures.

Turk J Gastroenterol

December 2024

Department of Emergency Medicine, Shandong University, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Qingdao, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered the most widespread chronic liver condition globally. Genome-wide association studies (GWAS) have pinpointed several genetic loci correlated to MASLD, yet the biological significance of these loci remains poorly understood. Initially, we applied Functional Mapping and Annotation (FUMA) to conduct a functional annotation of the MASLD GWAS summary statistics, which included data from 3242 cases and 707 631 controls.

View Article and Find Full Text PDF

Role of TNFRSF12A in cell proliferation, apoptosis, and proinflammatory cytokine expression by regulating the MAPK and NF-κB pathways in thyroid cancer cells.

Cytokine

December 2024

Department of General Surgery, Chun'an First People's Hosptial, Hangzhou, China. Electronic address:

Tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) has been reported to be upregulated in thyroid cancer (THCA). However, the role and mechanism of TNFRSF12A in THCA remain largely unknown. TNFRSF12A expression in THCA samples was analyzed using bioinformatics analysis.

View Article and Find Full Text PDF

The complete mitochondrial genome of (Diptera: Hippoboscoidea: Streblidae) provides new insights into phylogenetic relationships of Hippoboscoidea.

Bull Entomol Res

December 2024

Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Institute of Pathogens and Vectors, Dali University, Dali, Yunnan, China.

The family Streblidae is a significant grouping of dipteran insects within the superfamily Hippoboscoidea, which parasitizes the body surface of bats. With the global spread of bat-related pathogens in recent years, Streblidae has gained increasing attention due to its potential for pathogen transmission. A sample of was sequenced on the were obtained, compared with available Streblidae mitogenomes, and the phylogeny of Hippoboscoidea was reconstructed.

View Article and Find Full Text PDF

Towards the Albino Mutant Gene in Borkh.

Plants (Basel)

December 2024

Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Qinhuangdao 066600, China.

Albino mutation is among the most common phenomena that often causes a water imbalance and disturbs physiological functions in higher species of trees. Albinism frequently occurs in hybridized apples, but almost all seedlings die shortly after germination. In this study, a spontaneous albino mutant on Fuji apple trees was obtained.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR) as a potential therapeutic target for lung diseases: a narrative review.

J Thorac Dis

November 2024

Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.

Background And Objective: Farnesoid X receptor (FXR), which is encoded by the gene, is a ligand-activated transcription factor and a member of the nuclear receptor (NR) superfamily. As a receptor for bile acid (BA), FXR has been shown to play a key role in the regulation of BA metabolism, lipid metabolism, and the inflammatory response. This article reviews the roles of FXR in the pathogenesis of various lung diseases, and identifies potential diagnostic indicators or therapeutic targets for these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!