The role of astrocytic gap junctions in ischemia remains controversial. Several studies support that astrocytic gap junctions play a role in the spread of hypoxic injury, while other reports have demonstrated that blocking astrocytic gap junctions increases neuronal death. Using a stroke model on animals in which the astrocytic gap junction protein connexin43 (Cx43) was compromised, we explored the neuroprotective role of astrocytic gap junctions. A focal brain stroke was performed on heterozygous Cx43 null [Cx43(+/-)] mice, wild type [Cx43(+/+)] mice, astrocyte-directed Cx43 deficient [Cx43(fl/ fl)/hGFAP-cre] mice (here designated as Cre(+) mice), and their corresponding controls [Cx43(fl/fl)] (here designated as Cre(-) mice). Four days following stroke, ischemic lesions were measured for size and analyzed immunohistochemically. Stroke volume was significantly larger in Cx43(+/-) and Cre(+) mice compared to Cx43(+/+) and Cre(-) mice, respectively. Apoptosis as detected by TUNEL labeling and caspase-3 immunostaining was amplified in Cx43(+/-) and Cre(+) mice compared to their control groups. Furthermore, increased inflammation as characterized by the immunohistochemical staining of the microglial marker CD11b was observed in the Cre(+) mice penumbra. Astrocytic gap junctions may reduce apoptosis and inflammation in the penumbra following ischemic insult, suggesting that coupled astrocytes fulfill a neuroprotective role under ischemic stroke conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/cac.10.4-6.413.417 | DOI Listing |
J Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFFront Toxicol
January 2025
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States.
Primary cell cultures from rodent brain are widely used to investigate molecular and cellular mechanisms of neurotoxicity. To date, however, it has been challenging to reliably culture endogenous microglia in dissociated mixed cultures. This is a significant limitation of most neural cell models given the growing awareness of the importance of interactions between neurons, astrocytes and microglia in defining responses to neurotoxic exposures.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile. Electronic address:
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!