Vesicular stomatitis virus (VSV) is a prototypic non-segmented, negative-strand RNA virus that rapidly and efficiently shuts down the production of host cell-encoded proteins and utilizes the cell's protein production machinery to express high levels of virally encoded proteins. In an effort to take advantage of this characteristic of VSV, we have employed a reverse genetics system to create recombinant forms of VSV encoding a variety of murine cytokines. Previous studies have revealed that cells infected with recombinant VSV that lack expression of the surface glycoprotein (G protein), designated deltaG-VSV, more efficiently express and secrete recombinant proteins than do recombinant "wild-type" VSV. Therefore, murine cytokine-expressing recombinants were produced as deltaG viruses. Propagation of these deltaG viruses in cells that transiently express G protein in vitro results in G-complemented virions that can infect cells, shut down host protein synthesis, and express at high levels each virally encoded protein (including the designated cytokine). We assessed the ability of each deltaG-VSV construct to express recombinant cytokine by infecting BHK cells and then monitoring/measuring the production of the desired cytokine. When possible, the bioactivity of the cytokine products was also measured. The results presented here reveal that large quantities of bioactive cytokines can be produced rapidly and inexpensively using deltaG-VSV as a protein expression system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2003.08.008DOI Listing

Publication Analysis

Top Keywords

murine cytokines
8
express high
8
high levels
8
levels virally
8
virally encoded
8
deltag viruses
8
recombinant
6
vsv
6
protein
6
express
5

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

ZDHHC2 promoted antimycobacterial responses by selective autophagic degradation of B-RAF and C-RAF in macrophages.

Sci Adv

January 2025

Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.

S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it's unclear if PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage.

View Article and Find Full Text PDF

Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!