Dry powder inhalers for optimal drug delivery.

Expert Opin Biol Ther

Pharmaceutical Profiles Ltd, Mere Way, Ruddington Fields, Nottingham NG11 6JS, UK.

Published: January 2004

Dry powder inhalers (DPIs) have been available for delivering drugs to the lungs for over 30 years. In the last decade there has been a big increase in DPI development, resulting partly from recognised limitations in other types of inhaler device. Many companies are developing DPIs for asthma and chronic obstructive pulmonary disease (COPD) therapy, and there is increasing recognition of the potential role of DPI systems for other therapies, such as inhaled antibiotics and peptides/proteins. Optimised drug delivery may be achieved not only by improvements to devices, but also via more sophisticated formulations that disperse easily in the inhaled air-stream and which may often be delivered by relatively simple inhaler devices. DPIs could become the device category of choice for a wide range of inhaled therapies, involving both local and systemic drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14712598.4.1.23DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
dry powder
8
powder inhalers
8
inhalers optimal
4
optimal drug
4
delivery dry
4
inhalers dpis
4
dpis delivering
4
delivering drugs
4
drugs lungs
4

Similar Publications

Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques.

Int J Biol Macromol

January 2025

Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.

Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains.

View Article and Find Full Text PDF

Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.

View Article and Find Full Text PDF

Design and synthesis of isatin derivative payloaded peptide-drug conjugate as tubulin inhibitor against colorectal cancer.

Eur J Med Chem

January 2025

China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:

A series of isatin derivatives which could inhibit colorectal cancer (CRC) were synthesized. Among those compounds, 5B exhibited good inhibitory activity of CRC through the inhibition of tubulin expression, inducing apoptosis, and causing G2/M phase cell cycle arrest pathway, which suggested that 5B could be a potential tubulin inhibitor. Based on that, a novel peptide-drug conjugate (PDC), which employed the CRC cells related receptor CD44 ligand peptide A6 coupling to 5B to accomplish A6-5B.

View Article and Find Full Text PDF

Framework Nucleic Acid-Based and Neutrophil-Based Nanoplatform Loading Baicalin with Targeted Drug Delivery for Anti-Inflammation Treatment.

ACS Nano

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.

View Article and Find Full Text PDF

Design and Synthesis of Hederagenin Derivatives for the Treatment of Sepsis by Targeting TAK1 and Regulating the TAK1-NF-κB/MAPK Signaling.

J Med Chem

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.

Sepsis is a systemic inflammatory response caused by infection and is a leading cause of death worldwide. We designed and synthesized a series of hederagenin analogues with anti-inflammatory activity. The most effective compound, , reduced the release of TNF-α and IL-6 in RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!