Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200351264 | DOI Listing |
Chirality
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
Asymmetric catalysis is essential for addressing the increasing demand for enantiopure compounds. Recent advances in reticular chemistry have demonstrated that metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) possess highly regular porous architectures, exceptional tunability, and the ability to incorporate chiral functionalities through their open channels or cavities. These characteristics make them highly effective and enantioselective catalysts for a wide range of asymmetric transformations.
View Article and Find Full Text PDFInorg Chem
December 2024
Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.
The enantioselective performance of porous chiral metal-organic frameworks (CMOFs) is closely related to the pore size and uniformity of easily accessible active sites. The chiral recognition efficiency of microporous CMOFs is hindered by the restricted diffusion of the guest. Hierarchical porous chiral CMOFs with multiple pore size regimes ranging from micropores to macropores have emerged as potential candidates in chiral separation applications.
View Article and Find Full Text PDFNanoscale
December 2024
Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
Nanosized chiral octahedral M coordination cages were prepared self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China. Electronic address:
Restricted-access materials (RAMs) allow biological samples to directly enter the chromatographic column for analysis owing to the steric exclusion function ability for biomolecules and extraction function for small-molecule analytes, which promoting the development of rapid, efficient, and automated in vivo drug analysis. Few reports on chiral RAMs that have been used to analyze enantiomers and positional isomers in serum by direct injection in currently. In this study, a chiral porous organic cage material RCC3 was innovatively introduced into the inner surface of silica gel and modified the outer surface with polyethylene glycol to prepare a novel type of chiral RAM-RCC3, and reported the use of chiral RAM-RCC3 as a stationary phase for the separation of chiral compounds and positional isomers in blank serum using high-performance liquid chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!