This study was aimed to establish whether tamoxifen binds irreversibly to uterine DNA when given to women. Patients were given a single therapeutic dose of [(14)C]tamoxifen citrate orally (20 mg, 0.37 or 1.85 MBq) approximately 18 h prior to hysterectomy or breast surgery. Nonmalignant uterine tissue was separated into myometrium and endometrium. DNA and protein were isolated and bound radiolabel determined by the sensitive technique of accelerator mass spectrometry. Levels of irreversible DNA binding of tamoxifen in the endometrium of treated patients were 237 +/- 77 adducts/10(12) nucleotides (mean +/- SE, n = 10). In myometrial tissues, a similar extent of DNA binding was detected (492 +/- 112 adducts/10(12) nucleotides). Binding of tamoxifen to endometrial and myometrial proteins was 10 +/- 3 and 20 +/- 4 fmol/mg, respectively. In breast tissue, sufficient DNA could not be extracted but protein binding was an order of magnitude higher than that seen with endometrial proteins (358 +/- 81 fmol/mg). These results demonstrate that after oral administration, tamoxifen forms adducts in human uterine DNA but at low numbers relative to those previously reported in women after long-term tamoxifen treatment where levels, when detected, ranged from 15000 to 130000 adducts/10(12) nucleotides. Our findings support the hypothesis that the low level of DNA adducts in human uterus is unlikely to be involved with endometrial cancer development.
Download full-text PDF |
Source |
---|
Nucleic Acids Res
January 2015
Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
N-nitroso compounds represent a common type of environmental and endogenous DNA-damaging agents. After metabolic activation, many N-nitroso compounds are converted into a diazoacetate intermediate that can react with nucleobases to give carboxymethylated DNA adducts such as N3-carboxymethylthymidine (N3-CMdT) and O(4)-carboxymethylthymidine (O(4)-CMdT). In this study, we constructed non-replicative plasmids carrying a single N3-CMdT or O(4)-CMdT, site-specifically positioned in the transcribed strand, to investigate how these lesions compromise the flow of genetic information during transcription.
View Article and Find Full Text PDFEnviron Res
November 2009
Department of Public Health, Section of Environmental Health, University of Copenhagen, Oester Farimagsgade 5A, 1353 K, Copenhagen, Denmark.
Exposure to traffic-related air pollution in urban environment is common and has been associated with adverse human health effects. In utero exposures that result in DNA damage may affect health later in life. Early effects of maternal and in utero exposures to traffic-related air pollution were assessed through the use of validated biomarkers in blood cells from mother-newborn pairs.
View Article and Find Full Text PDFCrit Rev Toxicol
February 2010
DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, Delaware, USA.
The formation of deoxyribonucleic acid (DNA) adducts can have important and adverse consequences for cellular and whole organism function. Available methods for identification of DNA damage and quantification of adducts are reviewed. Analyses can be performed on various samples including tissues, isolated cells, and intact or hydrolyzed (digested) DNA from a variety of biological samples of interest for monitoring in humans.
View Article and Find Full Text PDFCarcinogenesis
October 2005
Department for Biosciences at Novum, Karolinska Institutet, SE-141 57 Huddinge, Stockholm, Sweden.
3-Nitrobenzanthrone (3-NBA) has been isolated from diesel exhaust and airborne particles and identified as a potent direct-acting mutagen in vitro and genotoxic agent in vivo. In order to evaluate the in vivo toxicity and carcinogenicity of 3-NBA in a situation corresponding to inhalation, a combined short-term and lifetime study with intratracheal (i.t.
View Article and Find Full Text PDFCarcinogenesis
March 2000
Carcinogen-DNA Interactions Section, LCCTP, Division of Basic Sciences, NCI, NIH, Building 37, Room 2A05, 37 Convent Drive, MSC-4255, Bethesda, MD 20892, USA.
Damage to DNA induced by carcinogenic chemicals reflects exposure and is directly related to tumor formation, whereas modification of protein provides relatively precise dosimetry for stable adducts of proteins with a known half-life. Sophisticated methods for the detection and quantitation of DNA and protein adducts have been developed during the last approximately 25 years. For DNA adducts the most widely used methods include electrochemical detection, mass spectrometry, fluorescence and phosphorescence spectroscopy, immunoassays and immunohistochemistry and (32)P-post-labeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!