The endothelium is the first line of defense for maintaining normal vascular function in the vessel wall; however, the endothelium is sensitive to metabolic stress. In patients with insulin resistance or type 2 diabetes mellitus, a set of metabolic insults--namely high plasma levels of glucose and free fatty acids, increased inflammation, dyslipidemia, and hypertension--cause endothelial dysfunction and a transition from an antiatherogenic endothelium to a proatherogenic endothelium. Disruption of endothelial function leads to activation of platelets and macrophages, increased thrombotic potential, transition of macrophages to foam cells, stimulation of cytokine secretion, and proliferation of vascular smooth muscle cells. Insulin-sensitizing agents, such as the thiazolidinediones (TZDs), improve flow-mediated vasodilation, decrease macrophage and smooth muscle cell activation, proliferation, and migration, and decrease plaque formation. The TZDs exert multifaceted effects on the vasculature by regulating the expression of transcription factors and orchestrating whole-gene programs that restore vascular physiology to the healthy state. Exercise training and increased levels of habitual physical activity have therapeutic benefit in terms of both preventing and treating insulin resistance and diabetes. However, this benefit of exercise training and increased physical activity is complicated by the fact that individuals with insulin resistance or type 2 diabetes have decreased maximal exercise capacity or maximal oxygen consumption and have slower oxygen uptake kinetics at the beginning of exercise. Both of these abnormalities contribute to the decreased levels of habitual physical activity observed in patients with diabetes. Preliminary data suggest that TZDs improve measures of cardiac function and exercise capacity, and investigators are assessing the impact of treatment with rosiglitazone on exercise capacity in an ongoing clinical trial.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjmed.2003.09.012DOI Listing

Publication Analysis

Top Keywords

exercise capacity
16
insulin resistance
12
physical activity
12
vascular function
8
function exercise
8
resistance type
8
type diabetes
8
smooth muscle
8
tzds improve
8
exercise training
8

Similar Publications

Exercise capacity and the psychosocial effect in preterm born infants - Should we do more?

Paediatr Respir Rev

January 2025

Department of Respiratory Medicine, The Children's Hospital at Westmead, Westmead, Sydney, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.

Physical activity is crucial for children's physical, cognitive, and social development, reducing the risk of non-communicable diseases and improving overall well-being. A major legacy of extremely preterm delivery is respiratory limitation with reduced lung function and decreased exercise capacity which can be further exacerbated by inactivity and deconditioning. Strategies to increase incidental physical activities in early childhood and participation in sport and more formal exercise programmes in middle childhood have the potential to optimize cardiopulmonary function, improve quality of life, and foster social interactions in childhood and beyond, thereby providing benefits that extend far beyond the physical domain.

View Article and Find Full Text PDF

Introduction: Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.

Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.

View Article and Find Full Text PDF

Spirulina Supplementation Alleviates Intense Exercise-Induced Damage and Modulates Gut Microbiota in Mice.

Nutrients

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China.

Background: , which are filamentous cyanobacteria, have gained significant popularity in the food industry, medicine, and aquaculture.

Methods: In this study, our objective was to explore the influence of on the gut microbiota and exercise capacity of mice undergoing high-intensity exercise. Twenty-four male BALB/c mice were divided into four groups, with six mice in each group.

View Article and Find Full Text PDF

Background: Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT).

Methods: In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!