We describe the development of a general catalytic asymmetric Michael reaction of acyclic beta-keto esters to cyclic enones, in which asymmetric induction occurs at the beta-position of the acceptors. Among the various asymmetric catalyst systems examined, the newly developed La-NR-linked-BINOL complexes (R = H or Me) afforded the best results in terms of reactivity and selectivity. In general, the NMe ligand 2 was suitable for the combination of small enones and small beta-keto esters, and the NH ligand 1 was suitable for bulkier substrates (steric tuning of the catalyst). Using the La-NMe-linked-BINOL complex, the Michael reaction of methyl acetoacetate (8a) to 2-cyclohexen-1-one (7b) gave the corresponding Michael adduct 9ba in 82% yield and 92% ee. The linker heteroatom in linked-BINOL is crucial for achieving high reactivity and selectivity in the Michael reaction of beta-keto esters. The amine moiety in the NR-linked-BINOL can also tune the Lewis acidity of the central metal (electronic tuning of the catalyst), which was supported by density functional studies and experimental results. Another advantage of the NR-linked-BINOL ligand as compared with O-linked-BINOL is the ease of modifying a substituent on the amine moiety, making it possible to synthesize a variety of NR-linked-BINOL ligands for further improvement or development of new asymmetric catalyses by introducing additional functionality on the linker with the amine moiety. The efficiency of the present asymmetric catalysis was demonstrated by the synthesis of the key intermediate of (-)-tubifolidine and (-)-19,20-dihydroakuammicine in only five steps compared to the nine steps required by the original process from the Michael product of malonate. This strategy is much more atom economical. On the basis of the results of mechanistic studies, we propose that a beta-keto ester serves as a ligand as well as a substrate and at least one beta-keto ester should be included in the active catalyst complex. Further improvement of the reaction by maintaining an appropriate ratio of the La-NMe-linked-BINOL complex and beta-keto esters is also described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja037635tDOI Listing

Publication Analysis

Top Keywords

beta-keto esters
20
michael reaction
16
amine moiety
12
catalytic asymmetric
8
asymmetric michael
8
reaction beta-keto
8
linker heteroatom
8
heteroatom linked-binol
8
reactivity selectivity
8
ligand suitable
8

Similar Publications

Copper-Catalyzed Regioselective Annulation of β-Keto Esters and Propargyl Acetates: Access to Polysubstituted Furans.

J Org Chem

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China.

A copper-catalyzed regioselective annulation reaction, conducted without ligands or oxidants, has been developed for the preparation of multisubstituted furans from the readily available starting materials, β-keto esters and propargyl acetates. This process accommodates a wide range of functional groups, resulting in furan skeletons with diverse substitution patterns. The method's potential synthetic utility is highlighted by its applicability in gram-scale preparations and late-stage modifications of natural products.

View Article and Find Full Text PDF

A synthesis of a small library of fluorescent 1,4-dihydropyridine nucleoside analogues has been successfully carried out under solvent-free conditions a one-pot three-component Hantzsch condensation reaction. The process involved a Ba(NO) catalyzed solvent-free reaction between 3',5'-di--acetyl-5-formyl-2'-deoxyuridine, differently substituted β-keto ester and ammonium acetate under microwave irradiation. This facile methodology yielded the desired products with very high yields (86-96%) under solvent-free reaction conditions in a short reaction time, which was followed by a simple workup.

View Article and Find Full Text PDF

Axially Chiral Phenanthroline Ligand-Enabled Pd-Catalyzed Asymmetric Amination and Alkylation of Aryl-Substituted Morita-Baylis-Hillman Adducts.

Org Lett

December 2024

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.

Highly enantioselective allylic amination and alkylation of racemic sterically hindered aryl-substituted Morita-Baylis-Hillman (MBH) adducts have been achieved by using an in situ formed Pd-catalyst from an axially chiral phenanthroline ligand. This dynamic kinetic asymmetric transformation (DYKAT) is compatible with cyclic and acyclic secondary amines, dialkyl malonates, β-keto esters, acetylacetone, and malononitrile, affording the corresponding chiral products, such as β-amino acid esters, in up to 95% yield and with up to a 99:1 enantiomeric ratio.

View Article and Find Full Text PDF

Multiple cross-linked cellulosic paper-based waterproof and biodegradable mulch film for "green" agriculture.

Int J Biol Macromol

January 2025

Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Article Synopsis
  • Biodegradable cellulosic mulch is a promising alternative to traditional plastic mulch in agriculture, but its water absorption and strength issues limited its use.
  • Researchers developed a new waterproof mulch film (OR-P-A) using dialdehyde cellulose and polyamide epichlorohydrin that improved the strength and water resistance of the material.
  • The new mulch film (OR-P-A) showed significant advancements, like an increased water contact angle and comparable seed germination rates to traditional polyethylene film, offering a sustainable solution for agriculture.
View Article and Find Full Text PDF

Brønsted Acid-Catalyzed, Asymmetric Allenoate Claisen Reaction.

J Org Chem

December 2024

Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California 91711, United States.

An auxiliary-based protocol is described for an asymmetric allenoate Claisen rearrangement. Silicated tosic acid (10 mol %) was used as an inexpensive, user-friendly catalyst. Stereochemical analysis revealed a preferential attack at the face of prostereogenic olefin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!