Unlabelled: In individuals with non-neuronopathic Gaucher disease, childhood manifestations are usually predictive of a more severe phenotype. Although children with Gaucher disease are at risk of irreversible disease complications, early intervention with an optimal dose of enzyme therapy can prevent the development of complications and ensure adequate, potentially normal, development through childhood and adolescence. Very few, if any, children diagnosed by signs and symptoms should go untreated. Evidence suggests that disease severity, disease progression and treatment response in different organs where glucocerebroside accumulates are often non-uniform in affected individuals. Therefore, serial monitoring of the affected compartments is important. This should include a thorough physical examination at 6- to 12-monthly intervals. Neurological assessment should be performed to rule out neurological involvement and should be undertaken periodically thereafter in children who are considered to have risk factors for developing neuronopathic disease. Haematological and biochemical markers, such as haemoglobin, platelet counts and chitotriosidase levels, should be assessed every 3 months initially, but when clinical goals have been met through treatment with enzyme therapy, the frequency can be reduced to every 12 to 24 months. Careful monitoring of bone disease is vitally important, as the resulting sequelae are associated with the greatest level of morbidity. By combining various imaging modalities, the skeletal complications of non-neuronopathic Gaucher disease can be effectively monitored so that irreversible skeletal pathology is avoided and pain due to bone involvement is diminished or eliminated. Monitoring must include regular psychosocial, functional status and quality-of-life evaluation, as well as consistent assessment of therapeutic goal attainment and necessary dosage adjustments based on the patient's progress.

Conclusion: Through comprehensive and serial monitoring, ultimately, a therapeutic dose of enzyme therapy that achieves sustained benefits can be found for each child with non-neuronpathic Gaucher disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-003-1363-zDOI Listing

Publication Analysis

Top Keywords

gaucher disease
20
non-neuronopathic gaucher
12
enzyme therapy
12
disease
10
dose enzyme
8
serial monitoring
8
gaucher
5
monitoring
5
paediatric non-neuronopathic
4
disease recommendations
4

Similar Publications

Gaucher disease (GD) is a metabolic disorder caused by mutations in the , located on 1q22. This gene encodes glucocerebrosidase (glucosylceramidase) enzyme. GD has a wide range of clinical manifestations from a perinatally lethal type to an asymptomatic form.

View Article and Find Full Text PDF

The Diagnosis and Therapy of Osteoporosis in Gaucher Disease.

Calcif Tissue Int

January 2025

Fondazione FIRMO Onlus, Italian Foundation for the Research On Bone Diseases, Florence, Italy.

Gaucher disease is a rare lysosomal storage disorder characterized by the accumulation of glucocerebroside lipids within multiple organs due to a deficiency of the lysosomal enzyme (acid β-glucosidase). It is an inherited autosomal recessive disease. The onset of symptoms can vary depending on disease type and severity, with milder forms presenting in adulthood.

View Article and Find Full Text PDF

Insights into skeletal involvement in adult Gaucher disease: a single-center experience.

J Bone Miner Metab

January 2025

Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey.

Introduction: Gaucher disease (GD) is a lysosomal storage disorder causing systemic and skeletal complications. This study evaluates bone health in adult GD type 1 patients, focusing on skeletal complications, bone mineral density (BMD), and biochemical markers.

Material And Methods: A cohort of adult GD type 1 patients followed up at Ege University Pediatric Metabolism Department were retrospectively examined.

View Article and Find Full Text PDF

There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!