A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. | LitMetric

Green tea constituent (-) epigallocatechin-3-gallate (EGCG) has shown remarkable cancer-preventive and some cancer-therapeutic effects. This is partially because of its ability to induce apoptosis in cancer cells without affecting normal cells. Previous studies from our laboratory have shown the involvement of NF-kappa B pathway in EGCG-mediated cell-cycle deregulation and apoptosis of human epidermoid carcinoma A431 cells. Here we show the essential role of caspases in EGCG-mediated inhibition of NF-kappa B and its subsequent apoptosis. Treatment of A431 cells with EGCG (10-40 microg/ml) resulted in dose-dependent inhibition of NF-kappa B/p65, induction of DNA breaks, cleavage of poly(ADP-ribose) polymerase (PARP) and morphological changes consistent with apoptosis. EGCG treatment of cells also resulted in significant activation of caspases, as shown by the dose- and time-dependent increase in DEVDase activity, and protein expression of caspase-3, -8 and -9. EGCG-mediated caspase activation induces proteolytic cleavage of NF-kappa B/p65 subunit, leading to the loss of transactivation domains, and driving the cells towards apoptosis. EGCG-mediated induction of apoptosis was significantly blocked by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-FMK), and moderately blocked by the specific caspase-3 inhibitor Z-DEVD-FMK. Further, pretreatment of cells with Z-VAD-FMK was found to suppress the cleavage of NF-kappa B/p65 subunit, thereby increasing nuclear translocation, DNA binding and transcriptional activity, thus protecting the cells from EGCG-induced apoptosis. Taken together, these studies for the first time demonstrate that EGCG-mediated activation of caspases is critical, at least in part, for inhibition of NF-kappa B and subsequent apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1207353DOI Listing

Publication Analysis

Top Keywords

inhibition nf-kappa
12
nf-kappa b/p65
12
apoptosis
9
essential role
8
role caspases
8
induction apoptosis
8
cells
8
a431 cells
8
nf-kappa subsequent
8
subsequent apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!