A 2.7-Angstrom molecular structure of human microsomal cytochrome P450 2C8 (CYP2C8) was determined by x-ray crystallography. The membrane protein was modified for crystallization by replacement of the hydrophobic N-terminal transmembrane domain with a short hydrophilic sequence before residue 28. The structure of the native sequence is complete from residue 28 to the beginning of a C-terminal histidine tag used for purification. CYP2C8 is one of the principal hepatic drug-metabolizing enzymes that oxidizes therapeutic drugs such as taxol and cerivastatin and endobiotics such as retinoic acid and arachidonic acid. Consistent with the relatively large size of its preferred substrates, the active site volume is twice that observed for the structure of CYP2C5. The extended active site cavity is bounded by the beta1 sheet and helix F' that have not previously been implicated in substrate recognition by mammalian P450s. CYP2C8 crystallized as a symmetric dimer formed by the interaction of helices F, F', G', and G. Two molecules of palmitic acid are bound in the dimer interface. The dimer is observed in solution, and mass spectrometry confirmed the association of palmitic acid with the enzyme. This novel finding identifies a peripheral binding site in P450s that may contribute to drug-drug interactions in P450 metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M312516200DOI Listing

Publication Analysis

Top Keywords

structure human
8
human microsomal
8
microsomal cytochrome
8
cytochrome p450
8
p450 2c8
8
binding site
8
active site
8
palmitic acid
8
acid
5
structure
4

Similar Publications

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.

View Article and Find Full Text PDF

UHPLC-TIMS-PASEF-MS for Lipidomics: From Theory to Practice.

Methods Mol Biol

January 2025

Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.

Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.

View Article and Find Full Text PDF

Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry.

Methods Mol Biol

January 2025

Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency.

View Article and Find Full Text PDF

Untargeted Metabolic Phenotyping by LC-MS.

Methods Mol Biol

January 2025

Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK.

Untargeted analysis by LC-MS is a valuable tool for metabolic profiling (metabonomics/metabolomics), and applications of this technology have grown rapidly over the past decade. LC-MS offers advantages of speed, sensitivity, relative ease of sample preparation, and large dynamic range compared to other platforms in this role. However, like any analytical approach, there are still drawbacks and challenges that have to be overcome, some of which are being addressed by advances in both column chemistries and instrumentation.

View Article and Find Full Text PDF

Purpose: Knee pain is a characteristic symptom of early-stage knee osteoarthritis. Recently, the association between knee symptoms and infrapatellar fat pad (IFP) degeneration has garnered attention. This study aimed to clarify the association between ultrasound-derived size and echo intensity (EI) in the IFP and knee symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!