Background: Cholesterol sulfate, the most important sterol sulfate in the human circulation, has emerged as a multifaceted molecule. Among its many demonstrated regulatory actions is its ability to influence blood clotting and fibrinolysis. Additionally, cholesterol sulfate is a constituent of human platelets, where it has been shown to support platelet aggregation.
Methods And Results: We have documented the presence of the enzyme (SULT2B1b) that sulfonates cholesterol in human platelets and examined the influence of plasma lipoproteins on the expression and activity of this enzyme. SULT2B1b mRNA was detected by reverse transcription-polymerase chain reaction and found to be the only steroid/sterol sulfotransferase expressed in these discoid anucleate particles. Using real-time polymerase chain reaction for quantification, we found that the level of SULT2B1b mRNA in platelets was maintained at 4 degrees C but substantially diminished over a period of 4 hours at 37 degrees C. The loss of SULT2B1b mRNA, however, was markedly reduced in the presence of HDL but not LDL. The stabilizing influence of HDL was attributable specifically to its apolipoprotein (apo) A-I component, whereas apoA-II and apoE were without effect. Importantly, there was a direct correlation between platelet SULT2B1b mRNA and protein levels in the presence or absence of lipoprotein that was reflected in enzymatic activity and cholesterol sulfate production.
Conclusions: Human platelets selectively express SULT2B1b, the physiological cholesterol sulfotransferase. Furthermore, the stability of SULT2B1b mRNA and protein in platelets maintained at 37 degrees C is subject to regulation by the apoA-I component of HDL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000108925.95658.8D | DOI Listing |
Thorac Cancer
December 2021
State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
Background: Esophageal cancer is currently the eighth most common tumor in the world and a leading cause of cancer death. SULT2B1 plays crucial roles in tumorigenesis. The purpose of this study is to explore the role of SULT2B1 in esophageal squamous cell carcinoma (ESCC).
View Article and Find Full Text PDFAging (Albany NY)
January 2021
Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China.
Atherosclerosis is a lipid-driven chronic inflammatory disease in which lipid-laden macrophage foam cells lead to inflamed lesions in arteries. Previous studies have proven that sulfotransferase 2B1b (SULT2B1b) has several roles in the regulation of lipid metabolism and the inflammatory response. However, little is known about the functions of SULT2B1b in ox-LDL-induced inflammation in macrophages.
View Article and Find Full Text PDFClin Sci (Lond)
January 2020
Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China.
The current main treatment for coronary artery disease (CAD) is to reduce low-density lipoprotein cholesterol (LDL-C) by statins, which could decrease the incidence of major adverse cardiovascular events (MACEs) by 30%. However, many residual risks still remain. To clarify the mechanism involved, we studied patients with acute myocardial infarction (AMI) with low LDL-C levels.
View Article and Find Full Text PDFEndocrinology
February 2020
Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas.
Mol Cancer Res
June 2019
Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.
Cholesterol sulfotransferase, SULT2B1b, has been demonstrated to modulate both androgen receptor activity and cell growth properties. However, the mechanism(s) by which SULT2B1b alters these properties within prostate cancer cells has not been described. Furthermore, specific advantages of SULT2B1b expression in prostate cancer cells are not understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!