Poplar thioredoxin h4 (popTrxh4) and a related CXXS type (popCXXS3) are both members of a plant thioredoxin h subgroup. PopTrxh4 exhibits the usual catalytic site WCGPC, whereas popCXXS3 harbors the non-typical active site WCMPS. Recombinant popTrxh4 and popCXXS3 are not reduced either by Arabidopsis thaliana NADPH-dependent thioredoxin reductases (NTR) A and B or by Escherichia coli NTR. We report here evidence that a poplar glutaredoxin as well as three E. coli Grxs are able to reduce popTrxh4. PopTrxh4 is able to reduce several thioredoxin targets as peroxiredoxins or methionine sulfoxide reductases. On the other hand, popCXXS3 exhibits an activity in the presence of glutathione and hydroxyethyldisulfide. Except for examples of glutathiolation, these are the first two examples of a direct interconnection between the thioredoxin and glutathione/glutaredoxin systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(03)01301-2 | DOI Listing |
Eur J Med Chem
January 2025
Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou Medical College, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China. Electronic address:
Pleurotin (1) is a benzoquinone meroterpenoid known for its wide-spectrum antitumor and antibiotic activities, notably acting as natural inhibitors of the thioredoxin reductase (TrxR). Pleurotin (1) has been chemically synthesized, but only in milligram quantities through at least 13 longest linear steps with 0.8 % overall yield due to its complex structure such as fused hexacyclic core with 8 contiguous stereocenters.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China.
Nat Plants
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.
View Article and Find Full Text PDFTree Physiol
January 2025
Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
is a unique aquatic invertebrate native to China, whose habitat is highly susceptible to environmental pollution, making it an ideal model for studying aquatic toxicology. Mitochondrial thioredoxin (Trx2), a key component of the Trx system, plays an essential role in scavenging reactive oxygen species (ROS), regulating mitochondrial membrane potential, and preventing ROS-induced oxidative stress and apoptosis. This study investigated the toxicity of cadmium (Cd) on and the role of Trx2 (Trx2) in Cd detoxification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!