The modified zeo-SBR is recommended for a new nitrogen removal process that has a special function of consistent ammonium exchange and bioregeneration of zeolite-floc. Three sets of sequencing batch reactors, control, zeo-SBR, and modified zeo-SBR were tested to assess nitrogen removal efficiency. The control reactor consisted of anoxic-fill, aeration-mixing, settling, and decanting/idle phases, meaning that nitrogen removal efficiency was dependent on the decanting volume in a cycle. The zeo-SBR reactor was operated in the same way as the control reactor, except for daily addition of powdered zeolite in the SBR reactor. The operating order sequences in the zeo-SBR were changed in the modified zeo-SBR. Anoxic-fill phase was followed by aeration-mixing phase in the zeo-SBR, while aeration-mixing phase was followed by anoxic-fill phase in the modified zeo-SBR to carry NH4(+)-N over to the next operational cycle and to reduce total nitrogen concentration in the effluent. In the modified zeo-SBR, nitrification and biological regeneration occurred during the initial aeration-mixing phase, while denitrification and ammonium adsorption occurred in the following anoxic-fill phase. The changed operational sequence in the modified zeo-SBR to adapt the ammonium adsorption and biological regeneration of the zeolite-floc could enhance nitrogen removal efficiency. As a result of the continuous operation, the nitrogen removal efficiencies of the control and zeo-SBR were in 68.5-70.9%, based on the 33% of decanting volume for a cycle. The zeo-SBR showed a consistent ammonium exchange and bio-regeneration in the anoxic-fill and aeration-mixing phases, respectively. Meanwhile, the effluent total nitrogen of the modified zeo-SBR showed 50-60 mg N/L through ammonium adsorption of the zeolite-floc when the influent ammonium concentration was 315 mg N/L, indicating the T-N removal efficiency was enhanced over 10% in the same HRT and SRT conditions as those of control and zeo-SBR reactors. The ammonium adsorption capacity was found to be 6-7 mg NH4(+)-N/g FSS that is equivalent to 40 mg NH4(+)-N/L of ammonium nitrogen removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2003.09.025 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
Ibuprofen (IBU), a commonly used non-steroidal anti-inflammatory drug, is frequently detected in wastewater treatment systems, where it can interfere with nitrogen removal. This study investigated the effects of IBU on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox (SAD/A) system. Moreover, key parameters, such as nitrogen removal efficiency, microbial activity, community structure, and IBU degradation products, were carefully monitored.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Dublin City University, School of Electronic Engineering, 9, Dublin, Ireland.
Exogenous nitrogen supplementation for the bioremediation of petroleum-contaminated soils is a widely adopted and effective environmentally friendly strategy. However, the mechanism by which varying nitrogen dosages affect hydrocarbon degradation pathways remains unclear. This study conducted bioremediation on soil with a total petroleum hydrocarbon (TPH) content of 17,090 mg/kg over 210 days.
View Article and Find Full Text PDFWaste Manag
January 2025
Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China.
Ammonia nitrogen (NH-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and FeO were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers.
View Article and Find Full Text PDFWater Res X
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!