Pathological and functional amyloid formation orchestrated by the secretory pathway.

Curr Opin Struct Biol

The Scripps Research Institute, Departments of Chemistry, The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, BCC265, La Jolla, CA 92037, USA.

Published: December 2003

Amyloidogenesis has historically been associated with pathology in a class of neurodegenerative diseases known as amyloid diseases. Recent studies have shown that proteolysis by furin during secretion initiates both variant gelsolin amyloidogenesis, associated with the disease familial amyloidosis of Finnish type, and Pmel17 fiber formation, which is necessary for the functional biogenesis of melanosomes. Proteolysis combined with organelle-dependent environment changes orchestrate amyloidogenesis associated with both pathological processes and a functional pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2003.10.010DOI Listing

Publication Analysis

Top Keywords

amyloidogenesis associated
8
pathological functional
4
functional amyloid
4
amyloid formation
4
formation orchestrated
4
orchestrated secretory
4
secretory pathway
4
pathway amyloidogenesis
4
amyloidogenesis historically
4
historically associated
4

Similar Publications

Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions.

Biochemistry (Mosc)

December 2024

Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8).

Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity.

View Article and Find Full Text PDF

Neuroprotective role of mirabegron: Targeting beta-3 adrenergic receptors to alleviate ulcerative colitis-associated cognitive impairment.

Biomed Pharmacother

January 2025

Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

While cognitive impairment has been documented in ulcerative colitic patients, the possible influence of central β3-adrenergic receptor (β3-AR) signaling on this extraintestinal manifestation remains unclear. Previously, we identified an imperative role for mirabegron (MA) as an agonist of β3-AR, in decreasing the BACE-1/beta-amyloid (Aβ) cue in the colons of UC rats. Consequently, we investigated its therapeutic potential for alleviating cognitive impairment associated with UC.

View Article and Find Full Text PDF

Introduction: The importance of protein amyloidogenesis, associated with various diseases and functional roles, has driven the creation of computational predictors of amyloidogenicity. The accuracy of these predictors, particularly those utilizing artificial intelligence technologies, heavily depends on the quality of the data.

Methods: We built Cross-Beta DB, a database containing high-quality data on known cross-β amyloids formed under natural conditions.

View Article and Find Full Text PDF

Self-Assembly of Human Fibrinogen into Microclot-Mimicking Antifibrinolytic Amyloid Fibrinogen Particles.

ACS Appl Bio Mater

January 2025

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!