A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. | LitMetric

One function of sleep is thought to be the restoration of energy stores in the brain depleted during wakefulness. One such energy store found in mammalian brains is glycogen. Many of the genes involved in glycogen regulation in mammals have also been found in Drosophila melanogaster and rest behavior in Drosophila has recently been shown to have the characteristics of sleep. We therefore examined, in the fly, variation in the glycogen contents of the brain, the whole head and the body throughout the rest/activity cycle and after rest deprivation. Glycogen in the brain varies significantly throughout the day (p=0.001) and is highest during rest and lowest while flies are active. Glycogen levels in the whole head and body do not show diurnal variation. Brain glycogen drops significantly when flies are rest deprived for 3 h (p=0.034) but no significant differences are observed after 6 h of rest deprivation. In contrast, glycogen is significantly depleted in the body after both 3 and 6 h of rest deprivation (p<0.0001 and p<0.0001, respectively). Glycogen in the fly brain changes in relationship to rest and activity and demonstrates a biphasic response to rest deprivation similar to that observed in mammalian astrocytes in culture.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.2003.02126.xDOI Listing

Publication Analysis

Top Keywords

rest deprivation
16
glycogen
8
glycogen brain
8
drosophila melanogaster
8
head body
8
rest
7
brain drosophila
4
melanogaster diurnal
4
diurnal rhythm
4
rhythm rest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!