Background: The human androgen receptor (AR) gene contains an uninterrupted CAG repeat that is polymorphic in length in the general population (range, 11-31 CAG's; median, 21). The CAG repeat encodes a glutamine repeat in the N-terminal transactivation domain of the AR protein. We previously reported that a 17-CAG AR gene was much more common in a cohort of men with prostate cancer (8.5%) than in the general European American population (1.3%). This suggested that a 17-CAG repeat may have pathophysiological consequences. The goal of the present study was to directly test the hypothesis that a 17-CAG repeat might uniquely affect androgen action in human prostate cancer cells.
Methods: DU145 cells, lacking endogenous AR, were transiently transfected with an AR expression plasmid (with a CAG repeat ranging in length from 14 to 25) and an androgen-responsive reporter plasmid (PSA-luciferase).
Results: We found a significant effect of CAG repeat length on AR protein levels per unit amount of DNA transfected (one-way ANOVA, P = 0.02), indicating the need to express transactivation data per unit amount of AR protein. CAG17 AR had 40% more transactivation activity per unit amount of AR protein than CAG21 AR (P < 0.01).
Conclusions: Thus, an AR with a 17-CAG repeat may mediate more efficacious growth stimulation of androgen-dependent prostate epithelial cells, and thereby increase the risk that prostate cancer cells develop more efficiently into a clinically significant cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.10316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!