Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200352831 | DOI Listing |
J Phys Chem Lett
January 2025
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.
Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.
View Article and Find Full Text PDFBrain Sci
January 2025
Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, 33037 Pasian di Prato, Italy.
Background/objectives: Ventriculoperitoneal shunting is a validated procedure for the treatment of idiopathic normal-pressure hydrocephalus. To select shunt-responsive patients, infusion and tap tests can be used. Only gait is evaluated after the procedure to establish a potential improvement.
View Article and Find Full Text PDFACS Nano
January 2025
James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
Phonon dynamics and transport determine how heat is utilized and dissipated in materials. In 2D systems for optoelectronics and thermoelectrics, the impact of nanoscale material structure on phonon propagation is central to controlling thermal conduction. Here, we directly observe in-plane coherent acoustic phonon propagation in black phosphorus (BP) using ultrafast electron microscopy.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
In this study, we used two-dimensional electronic spectroscopy to examine the early femtosecond dynamics of suspensions of colloidal gold nanorods with different aspect ratios. In all samples, the signal distribution in the 2D maps at this timescale shows a distinctive dispersive behavior, which can be explained by the interference between the exciting field and the field produced on the nanoparticle's surface by the collective motion of electrons when the plasmon is excited. Studying this interference effect, which is active only until the plasmon has been dephased, allows for a direct estimation of the dephasing time of the plasmon of an ensemble of colloidal particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!