Extracts of Xenopus eggs and of cultured human and hamster cells have the capacity to join nonhomologous DNA ends, and all do so with similar specificity. To examine the formation of repair complexes on DNA under conditions of end joining, end-labeled fragments were incubated with the various extracts and then subjected to DNase-I footprinting. Human and Xenopus extracts produced footprints virtually identical to that of purified DNA-dependent protein kinase holoenzyme (Ku plus DNA-PKcs), with protection of the terminal 28 bp. Extracts of hamster cells were more variable, but usually produced a 16-bp footprint, similar to that of Ku alone. In all cases a 28-bp holoenzyme-like footprint was associated with wortmannin-sensitive end joining, minimal 3'-5' exonucleolytic resection, and a predominance of accurate end-joining products. To determine whether the short segments of DNA occupied by Ku and DNA-PK were sufficient to support end joining, Y-shaped substrates were constructed in which only one arm was available for end joining. A Y substrate with a 31-bp arm bearing a partially cohesive 3' overhang was accurately joined by a Xenopus egg extract, whereas a substrate with a 21-bp arm was not. Surprisingly, a human cell extract did not join the Y substrates at all. The results suggest that differences in wortmannin sensitivity and in the distribution of in vitro end-joining products may be attributable to the variations in the levels of DNA-PKcs in the extracts. In addition, end joining in human extracts appears to involve interactions with significantly longer segments of DNA than the approximately 28 bp occupied by DNA-PK.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.10197DOI Listing

Publication Analysis

Top Keywords

dna-dependent protein
8
protein kinase
8
hamster cells
8
end-joining products
8
segments dna
8
dna occupied
8
occupied dna-pk
8
extracts
7
joining
6
dna
5

Similar Publications

Nuclear translocation of RON receptor tyrosine kinase. New mechanistic and functional insights.

Cytokine Growth Factor Rev

January 2025

Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:

Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) have massive genome and particle sizes compared to other known viruses. NCLDVs, including poxviruses, encode ATPases of the FtsK/HerA superfamily to facilitate genome encapsidation. However, their biochemical and structural characteristics are yet to be discerned.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in fundus imaging are uncovering disruptions in the neurovascular unit related to diabetic retinopathy (DR), highlighting the need for a better understanding of neurodegeneration during anti-VEGF treatments.
  • Extracellular mitochondria are found to worsen retinal pigment epithelium (RPE) degeneration and inflammation in DR patients by increasing in the vitreous and are linked with visual impairment, but not other advanced retinopathy complications.
  • The study reveals that these mitochondria trigger cell death in RPE cells via a process dependent on mitochondrial DNA and induce inflammatory responses through specific receptors, positioning them as a critical factor in the worsening of RPE deterioration in DR.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!