Articular cartilage is subjected to cyclic compressive stresses during joint loading. There is increasing experimental evidence that this loading is essential for the chondrocytes to maintain the functionality of the cartilage extracellular matrix (ECM) and that members of the integrin family of transmembrane receptors may play an important role in signal mechanotransduction between the ECM and chondrocytes. Of particular interest are the integrin subunits alpha5 and beta1, which are known to form the receptor for fibronectin, an important ECM protein, and to be involved in mechanotransduction as well as in the regulation of cytokine production. In this study, we measured the amounts of the integrin subunits alpha5 and beta1 in chondrocytes from young (immature) and adult (mature) bovine articular cartilage explants which were subjected to a continuously applied cyclic compressive stress of 1 MPa for 6 and 24 h. The integrin content per chondrocyte was measured immediately after load cessation by flow cytometry following matrix digestion to release the cells. We found that a mechanical stress induced an increase in the number of integrin subunit alpha5 in immature and mature cartilage but not in the integrin subunit beta1 content. The integrin contents were greatest after 6 h of loading and returned to control levels after 24 h of unloading. The results of this study supply further experimental evidence that chondrocytes respond to changes in their mechanical environment and that the integrin alpha5beta1 may act as a mechanical signal transducer between the chondrocyte and the ECM for the modulation of cellular physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-003-0836-8DOI Listing

Publication Analysis

Top Keywords

integrin subunits
12
subunits alpha5
12
alpha5 beta1
12
integrin
9
beta1 chondrocytes
8
cartilage explants
8
articular cartilage
8
cyclic compressive
8
experimental evidence
8
integrin subunit
8

Similar Publications

Background: Osteoarthritis (OA), characterized by progressive degeneration of cartilage and reactive proliferation of subchondral bone, stands as a prevalent condition in orthopedic clinics. However, the precise mechanisms underlying OA pathogenesis remain inadequately explored.

Methods: In this study, Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning techniques were employed to identify hub genes.

View Article and Find Full Text PDF

AP2A1 modulates cell states between senescence and rejuvenation.

Cell Signal

January 2025

Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan. Electronic address:

Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood.

View Article and Find Full Text PDF

Exploring Integrin α5β1 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension: Insights From Comprehensive Multicenter Preclinical Studies.

Circulation

January 2025

Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Center, Quebec City, QC, Canada (S.-E.L., Y.G., T.Y., T.S., M.M., C.R., M.S., S.B.-B., A.B., C.T., A.P., R.E.K., S.M., K.Y., F.P., S.P., O.B., S.B.).

Background: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PAs) and progressive increase in pulmonary vascular resistance leading to right ventricular failure. Although several drugs are approved for the treatment of PAH, mortality rates remain high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets.

View Article and Find Full Text PDF

Microglia, the parenchymal macrophage of the central nervous system, serve crucial remodeling functions throughout development. Microglia are transcriptionally heterogenous, suggesting that distinct microglial states confer discrete roles. Currently, little is known about how dynamic these states are, the cues that promote them, or how they impact microglial function.

View Article and Find Full Text PDF

Regulation of enzymatic lipid peroxidation in osteoblasts protects against postmenopausal osteoporosis.

Nat Commun

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.

Oxidative stress plays a critical role in postmenopausal osteoporosis, yet its impact on osteoblasts remains underexplored, limiting therapeutic advances. Our study identifies phospholipid peroxidation in osteoblasts as a key feature of postmenopausal osteoporosis. Estrogen regulates the transcription of glutathione peroxidase 4 (GPX4), an enzyme crucial for reducing phospholipid peroxides in osteoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!