ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells.

J Exp Bot

Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.

Published: January 2004

Increased synthesis and redistribution of the phytohormone abscisic acid (ABA) in response to water deficit stress initiates an intricate network of signalling pathways in guard cells leading to stomatal closure. Despite the large number of ABA signalling intermediates that are known in guard cells, new discoveries are still being made. Recently, the reactive oxygen species hydrogen peroxide (H2O2) and the reactive nitrogen species nitric oxide (NO) have been identified as key molecules regulating ABA-induced stomatal closure in various species. As with many other physiological responses in which H2O2 and NO are involved, stomatal closure in response to ABA also appears to require the tandem synthesis and action of both these signalling molecules. Recent pharmacological and genetic data have identified NADPH oxidase as a source of H2O2, whilst nitrate reductase has been identified as a source of NO in Arabidopsis guard cells. Some signalling components positioned downstream of H2O2 and NO are calcium, protein kinases and cyclic GMP. However, the exact interaction between the various signalling components in response to H2O2 and NO in guard cells remains to be established.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erh033DOI Listing

Publication Analysis

Top Keywords

guard cells
20
stomatal closure
12
hydrogen peroxide
8
nitric oxide
8
signalling components
8
signalling
6
guard
5
cells
5
h2o2
5
aba
4

Similar Publications

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

Introduction: Hand rejuvenation addresses aging-related changes such as subcutaneous fat loss, skin degradation, and photodamage. Autologous fat transfer (AFT) has emerged as a promising treatment, offering durable volume augmentation and regenerative effects. This study aims to systematically review the evidence on the techniques, outcomes, and complications of AFT for hand rejuvenation.

View Article and Find Full Text PDF

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Combined μ-XRF and XANES Track the Behavior of Pb from PM Entering Chinese Cabbage Leaves.

Environ Sci Technol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China.

Atmospheric fine particulate matter (PM) is the main contributor to Pb accumulation in edible Chinese cabbage leaves in North China. PM-Pb primarily enters leaves via stomatal foliar uptake. However, how PM-Pb is transported and stored within the leaf cells of Chinese cabbage remains unclear.

View Article and Find Full Text PDF

Promoter of Vegetable Pea Responds to Abiotic Stresses in Transgenic Tobacco.

Int J Mol Sci

December 2024

Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!